Metamath Proof Explorer


Theorem rlmlsm

Description: Subgroup sum of the ring module. (Contributed by Thierry Arnoux, 9-Apr-2024)

Ref Expression
Assertion rlmlsm R V LSSum R = LSSum ringLMod R

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 eqid + R = + R
3 eqid LSSum R = LSSum R
4 1 2 3 lsmfval R V LSSum R = t 𝒫 Base R , u 𝒫 Base R ran x t , y u x + R y
5 fvex ringLMod R V
6 rlmbas Base R = Base ringLMod R
7 rlmplusg + R = + ringLMod R
8 eqid LSSum ringLMod R = LSSum ringLMod R
9 6 7 8 lsmfval ringLMod R V LSSum ringLMod R = t 𝒫 Base R , u 𝒫 Base R ran x t , y u x + R y
10 5 9 mp1i R V LSSum ringLMod R = t 𝒫 Base R , u 𝒫 Base R ran x t , y u x + R y
11 4 10 eqtr4d R V LSSum R = LSSum ringLMod R