Database
BASIC ALGEBRAIC STRUCTURES
Ideals
The subring algebra; ideals
rlmlsm
Next ⟩
rlmvneg
Metamath Proof Explorer
Ascii
Unicode
Theorem
rlmlsm
Description:
Subgroup sum of the ring module.
(Contributed by
Thierry Arnoux
, 9-Apr-2024)
Ref
Expression
Assertion
rlmlsm
⊢
R
∈
V
→
LSSum
⁡
R
=
LSSum
⁡
ringLMod
⁡
R
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
R
=
Base
R
2
eqid
⊢
+
R
=
+
R
3
eqid
⊢
LSSum
⁡
R
=
LSSum
⁡
R
4
1
2
3
lsmfval
⊢
R
∈
V
→
LSSum
⁡
R
=
t
∈
𝒫
Base
R
,
u
∈
𝒫
Base
R
⟼
ran
⁡
x
∈
t
,
y
∈
u
⟼
x
+
R
y
5
fvex
⊢
ringLMod
⁡
R
∈
V
6
rlmbas
⊢
Base
R
=
Base
ringLMod
⁡
R
7
rlmplusg
⊢
+
R
=
+
ringLMod
⁡
R
8
eqid
⊢
LSSum
⁡
ringLMod
⁡
R
=
LSSum
⁡
ringLMod
⁡
R
9
6
7
8
lsmfval
⊢
ringLMod
⁡
R
∈
V
→
LSSum
⁡
ringLMod
⁡
R
=
t
∈
𝒫
Base
R
,
u
∈
𝒫
Base
R
⟼
ran
⁡
x
∈
t
,
y
∈
u
⟼
x
+
R
y
10
5
9
mp1i
⊢
R
∈
V
→
LSSum
⁡
ringLMod
⁡
R
=
t
∈
𝒫
Base
R
,
u
∈
𝒫
Base
R
⟼
ran
⁡
x
∈
t
,
y
∈
u
⟼
x
+
R
y
11
4
10
eqtr4d
⊢
R
∈
V
→
LSSum
⁡
R
=
LSSum
⁡
ringLMod
⁡
R