Metamath Proof Explorer


Theorem rmo0

Description: Vacuous restricted at-most-one quantifier is always true. (Contributed by AV, 3-Apr-2023)

Ref Expression
Assertion rmo0 *xφ

Proof

Step Hyp Ref Expression
1 rex0 ¬xφ
2 1 pm2.21i xφ∃!xφ
3 rmo5 *xφxφ∃!xφ
4 2 3 mpbir *xφ