Metamath Proof Explorer


Theorem rmo5

Description: Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017)

Ref Expression
Assertion rmo5 *xAφxAφ∃!xAφ

Proof

Step Hyp Ref Expression
1 moeu *xxAφxxAφ∃!xxAφ
2 df-rmo *xAφ*xxAφ
3 df-rex xAφxxAφ
4 df-reu ∃!xAφ∃!xxAφ
5 3 4 imbi12i xAφ∃!xAφxxAφ∃!xxAφ
6 1 2 5 3bitr4i *xAφxAφ∃!xAφ