Metamath Proof Explorer


Theorem rngmulr

Description: The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypothesis rngfn.r R=BasendxB+ndx+˙ndx·˙
Assertion rngmulr ·˙V·˙=R

Proof

Step Hyp Ref Expression
1 rngfn.r R=BasendxB+ndx+˙ndx·˙
2 1 rngstr RStruct13
3 mulridx 𝑟=Slotndx
4 snsstp3 ndx·˙BasendxB+ndx+˙ndx·˙
5 4 1 sseqtrri ndx·˙R
6 2 3 5 strfv ·˙V·˙=R