Description: The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013) (Revised by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rngfn.r | ⊢ 𝑅 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } | |
Assertion | rngmulr | ⊢ ( · ∈ 𝑉 → · = ( .r ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngfn.r | ⊢ 𝑅 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } | |
2 | 1 | rngstr | ⊢ 𝑅 Struct ⟨ 1 , 3 ⟩ |
3 | mulridx | ⊢ .r = Slot ( .r ‘ ndx ) | |
4 | snsstp3 | ⊢ { ⟨ ( .r ‘ ndx ) , · ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } | |
5 | 4 1 | sseqtrri | ⊢ { ⟨ ( .r ‘ ndx ) , · ⟩ } ⊆ 𝑅 |
6 | 2 3 5 | strfv | ⊢ ( · ∈ 𝑉 → · = ( .r ‘ 𝑅 ) ) |