Metamath Proof Explorer


Theorem rnnonrel

Description: The range of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion rnnonrel ranAA-1-1=

Proof

Step Hyp Ref Expression
1 dmnonrel domAA-1-1=
2 dm0rn0 domAA-1-1=ranAA-1-1=
3 1 2 mpbi ranAA-1-1=