Metamath Proof Explorer


Theorem dmnonrel

Description: The domain of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion dmnonrel domAA-1-1=

Proof

Step Hyp Ref Expression
1 dfdm4 domAA-1-1=ranAA-1-1-1
2 cnvnonrel AA-1-1-1=
3 2 rneqi ranAA-1-1-1=ran
4 rn0 ran=
5 1 3 4 3eqtri domAA-1-1=