Metamath Proof Explorer


Theorem rrvfn

Description: A real-valued random variable is a function over the universe. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses isrrvv.1 φPProb
rrvvf.1 φXRndVarP
Assertion rrvfn φXFndomP

Proof

Step Hyp Ref Expression
1 isrrvv.1 φPProb
2 rrvvf.1 φXRndVarP
3 1 2 rrvvf φX:domP
4 3 ffnd φXFndomP