Metamath Proof Explorer


Theorem rrvvf

Description: A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses isrrvv.1 φPProb
rrvvf.1 φXRndVarP
Assertion rrvvf φX:domP

Proof

Step Hyp Ref Expression
1 isrrvv.1 φPProb
2 rrvvf.1 φXRndVarP
3 1 isrrvv φXRndVarPX:domPy𝔅X-1ydomP
4 2 3 mpbid φX:domPy𝔅X-1ydomP
5 4 simpld φX:domP