Metamath Proof Explorer


Theorem isrrvv

Description: Elementhood to the set of real-valued random variables with respect to the probability P . (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypothesis isrrvv.1 φPProb
Assertion isrrvv φXRndVarPX:domPy𝔅X-1ydomP

Proof

Step Hyp Ref Expression
1 isrrvv.1 φPProb
2 1 rrvmbfm φXRndVarPXdomPMblFnμ𝔅
3 domprobsiga PProbdomPransigAlgebra
4 1 3 syl φdomPransigAlgebra
5 brsigarn 𝔅sigAlgebra
6 elrnsiga 𝔅sigAlgebra𝔅ransigAlgebra
7 5 6 mp1i φ𝔅ransigAlgebra
8 4 7 ismbfm φXdomPMblFnμ𝔅X𝔅domPy𝔅X-1ydomP
9 unibrsiga 𝔅=
10 9 oveq1i 𝔅domP=domP
11 10 eleq2i X𝔅domPXdomP
12 reex V
13 4 uniexd φdomPV
14 elmapg VdomPVXdomPX:domP
15 12 13 14 sylancr φXdomPX:domP
16 11 15 bitrid φX𝔅domPX:domP
17 16 anbi1d φX𝔅domPy𝔅X-1ydomPX:domPy𝔅X-1ydomP
18 2 8 17 3bitrd φXRndVarPX:domPy𝔅X-1ydomP