Metamath Proof Explorer


Definition df-siga

Description: Define a sigma-algebra, i.e. a set closed under complement and countable union. Literature usually uses capital greek sigma and omega letters for the algebra set, and the base set respectively. We are using S and O as a parallel. (Contributed by Thierry Arnoux, 3-Sep-2016)

Ref Expression
Assertion df-siga sigAlgebra = o V s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s

Detailed syntax breakdown

Step Hyp Ref Expression
0 csiga class sigAlgebra
1 vo setvar o
2 cvv class V
3 vs setvar s
4 3 cv setvar s
5 1 cv setvar o
6 5 cpw class 𝒫 o
7 4 6 wss wff s 𝒫 o
8 5 4 wcel wff o s
9 vx setvar x
10 9 cv setvar x
11 5 10 cdif class o x
12 11 4 wcel wff o x s
13 12 9 4 wral wff x s o x s
14 4 cpw class 𝒫 s
15 cdom class
16 com class ω
17 10 16 15 wbr wff x ω
18 10 cuni class x
19 18 4 wcel wff x s
20 17 19 wi wff x ω x s
21 20 9 14 wral wff x 𝒫 s x ω x s
22 8 13 21 w3a wff o s x s o x s x 𝒫 s x ω x s
23 7 22 wa wff s 𝒫 o o s x s o x s x 𝒫 s x ω x s
24 23 3 cab class s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s
25 1 2 24 cmpt class o V s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s
26 0 25 wceq wff sigAlgebra = o V s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s