Metamath Proof Explorer


Definition df-siga

Description: Define a sigma-algebra, i.e. a set closed under complement and countable union. Literature usually uses capital greek sigma and omega letters for the algebra set, and the base set respectively. We are using S and O as a parallel. (Contributed by Thierry Arnoux, 3-Sep-2016)

Ref Expression
Assertion df-siga sigAlgebra=oVs|s𝒫oosxsoxsx𝒫sxωxs

Detailed syntax breakdown

Step Hyp Ref Expression
0 csiga classsigAlgebra
1 vo setvaro
2 cvv classV
3 vs setvars
4 3 cv setvars
5 1 cv setvaro
6 5 cpw class𝒫o
7 4 6 wss wffs𝒫o
8 5 4 wcel wffos
9 vx setvarx
10 9 cv setvarx
11 5 10 cdif classox
12 11 4 wcel wffoxs
13 12 9 4 wral wffxsoxs
14 4 cpw class𝒫s
15 cdom class
16 com classω
17 10 16 15 wbr wffxω
18 10 cuni classx
19 18 4 wcel wffxs
20 17 19 wi wffxωxs
21 20 9 14 wral wffx𝒫sxωxs
22 8 13 21 w3a wffosxsoxsx𝒫sxωxs
23 7 22 wa wffs𝒫oosxsoxsx𝒫sxωxs
24 23 3 cab classs|s𝒫oosxsoxsx𝒫sxωxs
25 1 2 24 cmpt classoVs|s𝒫oosxsoxsx𝒫sxωxs
26 0 25 wceq wffsigAlgebra=oVs|s𝒫oosxsoxsx𝒫sxωxs