Metamath Proof Explorer


Definition df-siga

Description: Define a sigma-algebra, i.e. a set closed under complement and countable union. Literature usually uses capital greek sigma and omega letters for the algebra set, and the base set respectively. We are using S and O as a parallel. (Contributed by Thierry Arnoux, 3-Sep-2016)

Ref Expression
Assertion df-siga
|- sigAlgebra = ( o e. _V |-> { s | ( s C_ ~P o /\ ( o e. s /\ A. x e. s ( o \ x ) e. s /\ A. x e. ~P s ( x ~<_ _om -> U. x e. s ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csiga
 |-  sigAlgebra
1 vo
 |-  o
2 cvv
 |-  _V
3 vs
 |-  s
4 3 cv
 |-  s
5 1 cv
 |-  o
6 5 cpw
 |-  ~P o
7 4 6 wss
 |-  s C_ ~P o
8 5 4 wcel
 |-  o e. s
9 vx
 |-  x
10 9 cv
 |-  x
11 5 10 cdif
 |-  ( o \ x )
12 11 4 wcel
 |-  ( o \ x ) e. s
13 12 9 4 wral
 |-  A. x e. s ( o \ x ) e. s
14 4 cpw
 |-  ~P s
15 cdom
 |-  ~<_
16 com
 |-  _om
17 10 16 15 wbr
 |-  x ~<_ _om
18 10 cuni
 |-  U. x
19 18 4 wcel
 |-  U. x e. s
20 17 19 wi
 |-  ( x ~<_ _om -> U. x e. s )
21 20 9 14 wral
 |-  A. x e. ~P s ( x ~<_ _om -> U. x e. s )
22 8 13 21 w3a
 |-  ( o e. s /\ A. x e. s ( o \ x ) e. s /\ A. x e. ~P s ( x ~<_ _om -> U. x e. s ) )
23 7 22 wa
 |-  ( s C_ ~P o /\ ( o e. s /\ A. x e. s ( o \ x ) e. s /\ A. x e. ~P s ( x ~<_ _om -> U. x e. s ) ) )
24 23 3 cab
 |-  { s | ( s C_ ~P o /\ ( o e. s /\ A. x e. s ( o \ x ) e. s /\ A. x e. ~P s ( x ~<_ _om -> U. x e. s ) ) ) }
25 1 2 24 cmpt
 |-  ( o e. _V |-> { s | ( s C_ ~P o /\ ( o e. s /\ A. x e. s ( o \ x ) e. s /\ A. x e. ~P s ( x ~<_ _om -> U. x e. s ) ) ) } )
26 0 25 wceq
 |-  sigAlgebra = ( o e. _V |-> { s | ( s C_ ~P o /\ ( o e. s /\ A. x e. s ( o \ x ) e. s /\ A. x e. ~P s ( x ~<_ _om -> U. x e. s ) ) ) } )