Step |
Hyp |
Ref |
Expression |
0 |
|
csiga |
⊢ sigAlgebra |
1 |
|
vo |
⊢ 𝑜 |
2 |
|
cvv |
⊢ V |
3 |
|
vs |
⊢ 𝑠 |
4 |
3
|
cv |
⊢ 𝑠 |
5 |
1
|
cv |
⊢ 𝑜 |
6 |
5
|
cpw |
⊢ 𝒫 𝑜 |
7 |
4 6
|
wss |
⊢ 𝑠 ⊆ 𝒫 𝑜 |
8 |
5 4
|
wcel |
⊢ 𝑜 ∈ 𝑠 |
9 |
|
vx |
⊢ 𝑥 |
10 |
9
|
cv |
⊢ 𝑥 |
11 |
5 10
|
cdif |
⊢ ( 𝑜 ∖ 𝑥 ) |
12 |
11 4
|
wcel |
⊢ ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 |
13 |
12 9 4
|
wral |
⊢ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 |
14 |
4
|
cpw |
⊢ 𝒫 𝑠 |
15 |
|
cdom |
⊢ ≼ |
16 |
|
com |
⊢ ω |
17 |
10 16 15
|
wbr |
⊢ 𝑥 ≼ ω |
18 |
10
|
cuni |
⊢ ∪ 𝑥 |
19 |
18 4
|
wcel |
⊢ ∪ 𝑥 ∈ 𝑠 |
20 |
17 19
|
wi |
⊢ ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) |
21 |
20 9 14
|
wral |
⊢ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) |
22 |
8 13 21
|
w3a |
⊢ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) |
23 |
7 22
|
wa |
⊢ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) |
24 |
23 3
|
cab |
⊢ { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } |
25 |
1 2 24
|
cmpt |
⊢ ( 𝑜 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } ) |
26 |
0 25
|
wceq |
⊢ sigAlgebra = ( 𝑜 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } ) |