Metamath Proof Explorer


Definition df-siga

Description: Define a sigma-algebra, i.e. a set closed under complement and countable union. Literature usually uses capital greek sigma and omega letters for the algebra set, and the base set respectively. We are using S and O as a parallel. (Contributed by Thierry Arnoux, 3-Sep-2016)

Ref Expression
Assertion df-siga sigAlgebra = ( 𝑜 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑠 ∧ ∀ 𝑥𝑠 ( 𝑜𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → 𝑥𝑠 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csiga sigAlgebra
1 vo 𝑜
2 cvv V
3 vs 𝑠
4 3 cv 𝑠
5 1 cv 𝑜
6 5 cpw 𝒫 𝑜
7 4 6 wss 𝑠 ⊆ 𝒫 𝑜
8 5 4 wcel 𝑜𝑠
9 vx 𝑥
10 9 cv 𝑥
11 5 10 cdif ( 𝑜𝑥 )
12 11 4 wcel ( 𝑜𝑥 ) ∈ 𝑠
13 12 9 4 wral 𝑥𝑠 ( 𝑜𝑥 ) ∈ 𝑠
14 4 cpw 𝒫 𝑠
15 cdom
16 com ω
17 10 16 15 wbr 𝑥 ≼ ω
18 10 cuni 𝑥
19 18 4 wcel 𝑥𝑠
20 17 19 wi ( 𝑥 ≼ ω → 𝑥𝑠 )
21 20 9 14 wral 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → 𝑥𝑠 )
22 8 13 21 w3a ( 𝑜𝑠 ∧ ∀ 𝑥𝑠 ( 𝑜𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → 𝑥𝑠 ) )
23 7 22 wa ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑠 ∧ ∀ 𝑥𝑠 ( 𝑜𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → 𝑥𝑠 ) ) )
24 23 3 cab { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑠 ∧ ∀ 𝑥𝑠 ( 𝑜𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → 𝑥𝑠 ) ) ) }
25 1 2 24 cmpt ( 𝑜 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑠 ∧ ∀ 𝑥𝑠 ( 𝑜𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → 𝑥𝑠 ) ) ) } )
26 0 25 wceq sigAlgebra = ( 𝑜 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑠 ∧ ∀ 𝑥𝑠 ( 𝑜𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → 𝑥𝑠 ) ) ) } )