| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rab | ⊢ { 𝑠  ∈  𝒫  𝒫  𝑜  ∣  ( 𝑜  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑜  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑠 ) ) }  =  { 𝑠  ∣  ( 𝑠  ∈  𝒫  𝒫  𝑜  ∧  ( 𝑜  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑜  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑠 ) ) ) } | 
						
							| 2 |  | velpw | ⊢ ( 𝑠  ∈  𝒫  𝒫  𝑜  ↔  𝑠  ⊆  𝒫  𝑜 ) | 
						
							| 3 | 2 | anbi1i | ⊢ ( ( 𝑠  ∈  𝒫  𝒫  𝑜  ∧  ( 𝑜  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑜  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑠 ) ) )  ↔  ( 𝑠  ⊆  𝒫  𝑜  ∧  ( 𝑜  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑜  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑠 ) ) ) ) | 
						
							| 4 | 3 | abbii | ⊢ { 𝑠  ∣  ( 𝑠  ∈  𝒫  𝒫  𝑜  ∧  ( 𝑜  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑜  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑠 ) ) ) }  =  { 𝑠  ∣  ( 𝑠  ⊆  𝒫  𝑜  ∧  ( 𝑜  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑜  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑠 ) ) ) } | 
						
							| 5 | 1 4 | eqtri | ⊢ { 𝑠  ∈  𝒫  𝒫  𝑜  ∣  ( 𝑜  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑜  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑠 ) ) }  =  { 𝑠  ∣  ( 𝑠  ⊆  𝒫  𝑜  ∧  ( 𝑜  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑜  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑠 ) ) ) } | 
						
							| 6 |  | vex | ⊢ 𝑜  ∈  V | 
						
							| 7 |  | pwexg | ⊢ ( 𝑜  ∈  V  →  𝒫  𝑜  ∈  V ) | 
						
							| 8 |  | pwexg | ⊢ ( 𝒫  𝑜  ∈  V  →  𝒫  𝒫  𝑜  ∈  V ) | 
						
							| 9 | 6 7 8 | mp2b | ⊢ 𝒫  𝒫  𝑜  ∈  V | 
						
							| 10 | 9 | rabex | ⊢ { 𝑠  ∈  𝒫  𝒫  𝑜  ∣  ( 𝑜  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑜  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑠 ) ) }  ∈  V | 
						
							| 11 | 5 10 | eqeltrri | ⊢ { 𝑠  ∣  ( 𝑠  ⊆  𝒫  𝑜  ∧  ( 𝑜  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑜  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  𝑠 ) ) ) }  ∈  V |