| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfvex |
⊢ ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑂 ∈ V ) |
| 2 |
|
elex |
⊢ ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑆 ∈ V ) |
| 3 |
1 2
|
jca |
⊢ ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → ( 𝑂 ∈ V ∧ 𝑆 ∈ V ) ) |
| 4 |
3
|
a1i |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → ( 𝑂 ∈ V ∧ 𝑆 ∈ V ) ) ) |
| 5 |
|
simpr1 |
⊢ ( ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) → 𝑂 ∈ 𝑆 ) |
| 6 |
|
elex |
⊢ ( 𝑂 ∈ 𝑆 → 𝑂 ∈ V ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) → 𝑂 ∈ V ) |
| 8 |
7
|
a1i |
⊢ ( 𝑆 ∈ V → ( ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) → 𝑂 ∈ V ) ) |
| 9 |
8
|
anc2ri |
⊢ ( 𝑆 ∈ V → ( ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) → ( 𝑂 ∈ V ∧ 𝑆 ∈ V ) ) ) |
| 10 |
|
df-siga |
⊢ sigAlgebra = ( 𝑜 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } ) |
| 11 |
|
sigaex |
⊢ { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } ∈ V |
| 12 |
|
pweq |
⊢ ( 𝑜 = 𝑂 → 𝒫 𝑜 = 𝒫 𝑂 ) |
| 13 |
12
|
sseq2d |
⊢ ( 𝑜 = 𝑂 → ( 𝑠 ⊆ 𝒫 𝑜 ↔ 𝑠 ⊆ 𝒫 𝑂 ) ) |
| 14 |
|
sseq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ⊆ 𝒫 𝑂 ↔ 𝑆 ⊆ 𝒫 𝑂 ) ) |
| 15 |
13 14
|
sylan9bb |
⊢ ( ( 𝑜 = 𝑂 ∧ 𝑠 = 𝑆 ) → ( 𝑠 ⊆ 𝒫 𝑜 ↔ 𝑆 ⊆ 𝒫 𝑂 ) ) |
| 16 |
|
eleq12 |
⊢ ( ( 𝑜 = 𝑂 ∧ 𝑠 = 𝑆 ) → ( 𝑜 ∈ 𝑠 ↔ 𝑂 ∈ 𝑆 ) ) |
| 17 |
|
simpr |
⊢ ( ( 𝑜 = 𝑂 ∧ 𝑠 = 𝑆 ) → 𝑠 = 𝑆 ) |
| 18 |
|
difeq1 |
⊢ ( 𝑜 = 𝑂 → ( 𝑜 ∖ 𝑥 ) = ( 𝑂 ∖ 𝑥 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝑜 = 𝑂 ∧ 𝑠 = 𝑆 ) → ( 𝑜 ∖ 𝑥 ) = ( 𝑂 ∖ 𝑥 ) ) |
| 20 |
19
|
eleq1d |
⊢ ( ( 𝑜 = 𝑂 ∧ 𝑠 = 𝑆 ) → ( ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ↔ ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) ) |
| 21 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ↔ ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝑜 = 𝑂 ∧ 𝑠 = 𝑆 ) → ( ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ↔ ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ) ) |
| 23 |
20 22
|
bitrd |
⊢ ( ( 𝑜 = 𝑂 ∧ 𝑠 = 𝑆 ) → ( ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ↔ ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ) ) |
| 24 |
17 23
|
raleqbidv |
⊢ ( ( 𝑜 = 𝑂 ∧ 𝑠 = 𝑆 ) → ( ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ↔ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ) ) |
| 25 |
|
pweq |
⊢ ( 𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆 ) |
| 26 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( ∪ 𝑥 ∈ 𝑠 ↔ ∪ 𝑥 ∈ 𝑆 ) ) |
| 27 |
26
|
imbi2d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ↔ ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) |
| 28 |
25 27
|
raleqbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝑜 = 𝑂 ∧ 𝑠 = 𝑆 ) → ( ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) |
| 30 |
16 24 29
|
3anbi123d |
⊢ ( ( 𝑜 = 𝑂 ∧ 𝑠 = 𝑆 ) → ( ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ↔ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
| 31 |
15 30
|
anbi12d |
⊢ ( ( 𝑜 = 𝑂 ∧ 𝑠 = 𝑆 ) → ( ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) ↔ ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |
| 32 |
10 11 31
|
abfmpel |
⊢ ( ( 𝑂 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |
| 33 |
32
|
a1i |
⊢ ( 𝑆 ∈ V → ( ( 𝑂 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) ) |
| 34 |
4 9 33
|
pm5.21ndd |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |