Metamath Proof Explorer


Theorem abfmpel

Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016)

Ref Expression
Hypotheses abfmpel.1 𝐹 = ( 𝑥𝑉 ↦ { 𝑦𝜑 } )
abfmpel.2 { 𝑦𝜑 } ∈ V
abfmpel.3 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
Assertion abfmpel ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐵 ∈ ( 𝐹𝐴 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 abfmpel.1 𝐹 = ( 𝑥𝑉 ↦ { 𝑦𝜑 } )
2 abfmpel.2 { 𝑦𝜑 } ∈ V
3 abfmpel.3 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
4 2 csbex 𝐴 / 𝑥 { 𝑦𝜑 } ∈ V
5 1 fvmpts ( ( 𝐴𝑉 𝐴 / 𝑥 { 𝑦𝜑 } ∈ V ) → ( 𝐹𝐴 ) = 𝐴 / 𝑥 { 𝑦𝜑 } )
6 4 5 mpan2 ( 𝐴𝑉 → ( 𝐹𝐴 ) = 𝐴 / 𝑥 { 𝑦𝜑 } )
7 csbab 𝐴 / 𝑥 { 𝑦𝜑 } = { 𝑦[ 𝐴 / 𝑥 ] 𝜑 }
8 6 7 eqtrdi ( 𝐴𝑉 → ( 𝐹𝐴 ) = { 𝑦[ 𝐴 / 𝑥 ] 𝜑 } )
9 8 eleq2d ( 𝐴𝑉 → ( 𝐵 ∈ ( 𝐹𝐴 ) ↔ 𝐵 ∈ { 𝑦[ 𝐴 / 𝑥 ] 𝜑 } ) )
10 9 adantr ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐵 ∈ ( 𝐹𝐴 ) ↔ 𝐵 ∈ { 𝑦[ 𝐴 / 𝑥 ] 𝜑 } ) )
11 simpl ( ( 𝐴𝑉𝑦 = 𝐵 ) → 𝐴𝑉 )
12 3 ancoms ( ( 𝑦 = 𝐵𝑥 = 𝐴 ) → ( 𝜑𝜓 ) )
13 12 adantll ( ( ( 𝐴𝑉𝑦 = 𝐵 ) ∧ 𝑥 = 𝐴 ) → ( 𝜑𝜓 ) )
14 11 13 sbcied ( ( 𝐴𝑉𝑦 = 𝐵 ) → ( [ 𝐴 / 𝑥 ] 𝜑𝜓 ) )
15 14 ex ( 𝐴𝑉 → ( 𝑦 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑𝜓 ) ) )
16 15 alrimiv ( 𝐴𝑉 → ∀ 𝑦 ( 𝑦 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑𝜓 ) ) )
17 elabgt ( ( 𝐵𝑊 ∧ ∀ 𝑦 ( 𝑦 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑𝜓 ) ) ) → ( 𝐵 ∈ { 𝑦[ 𝐴 / 𝑥 ] 𝜑 } ↔ 𝜓 ) )
18 16 17 sylan2 ( ( 𝐵𝑊𝐴𝑉 ) → ( 𝐵 ∈ { 𝑦[ 𝐴 / 𝑥 ] 𝜑 } ↔ 𝜓 ) )
19 18 ancoms ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐵 ∈ { 𝑦[ 𝐴 / 𝑥 ] 𝜑 } ↔ 𝜓 ) )
20 10 19 bitrd ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐵 ∈ ( 𝐹𝐴 ) ↔ 𝜓 ) )