Metamath Proof Explorer


Theorem abfmpel

Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016)

Ref Expression
Hypotheses abfmpel.1 F=xVy|φ
abfmpel.2 y|φV
abfmpel.3 x=Ay=Bφψ
Assertion abfmpel AVBWBFAψ

Proof

Step Hyp Ref Expression
1 abfmpel.1 F=xVy|φ
2 abfmpel.2 y|φV
3 abfmpel.3 x=Ay=Bφψ
4 2 csbex A/xy|φV
5 1 fvmpts AVA/xy|φVFA=A/xy|φ
6 4 5 mpan2 AVFA=A/xy|φ
7 csbab A/xy|φ=y|[˙A/x]˙φ
8 6 7 eqtrdi AVFA=y|[˙A/x]˙φ
9 8 eleq2d AVBFABy|[˙A/x]˙φ
10 9 adantr AVBWBFABy|[˙A/x]˙φ
11 simpl AVy=BAV
12 3 ancoms y=Bx=Aφψ
13 12 adantll AVy=Bx=Aφψ
14 11 13 sbcied AVy=B[˙A/x]˙φψ
15 14 ex AVy=B[˙A/x]˙φψ
16 15 alrimiv AVyy=B[˙A/x]˙φψ
17 elabgt BWyy=B[˙A/x]˙φψBy|[˙A/x]˙φψ
18 16 17 sylan2 BWAVBy|[˙A/x]˙φψ
19 18 ancoms AVBWBy|[˙A/x]˙φψ
20 10 19 bitrd AVBWBFAψ