Metamath Proof Explorer


Theorem fmptdF

Description: Domain and codomain of the mapping operation; deduction form. This version of fmptd uses bound-variable hypothesis instead of distinct variable conditions. (Contributed by Thierry Arnoux, 28-Mar-2017)

Ref Expression
Hypotheses fmptdF.p xφ
fmptdF.a _xA
fmptdF.c _xC
fmptdF.1 φxABC
fmptdF.2 F=xAB
Assertion fmptdF φF:AC

Proof

Step Hyp Ref Expression
1 fmptdF.p xφ
2 fmptdF.a _xA
3 fmptdF.c _xC
4 fmptdF.1 φxABC
5 fmptdF.2 F=xAB
6 4 sbimi yxφxAyxBC
7 sban yxφxAyxφyxxA
8 1 sbf yxφφ
9 2 clelsb1fw yxxAyA
10 8 9 anbi12i yxφyxxAφyA
11 7 10 bitri yxφxAφyA
12 sbsbc yxBC[˙y/x]˙BC
13 sbcel12 [˙y/x]˙BCy/xBy/xC
14 vex yV
15 14 3 csbgfi y/xC=C
16 15 eleq2i y/xBy/xCy/xBC
17 13 16 bitri [˙y/x]˙BCy/xBC
18 12 17 bitri yxBCy/xBC
19 6 11 18 3imtr3i φyAy/xBC
20 19 ralrimiva φyAy/xBC
21 nfcv _yA
22 nfcv _yB
23 nfcsb1v _xy/xB
24 csbeq1a x=yB=y/xB
25 2 21 22 23 24 cbvmptf xAB=yAy/xB
26 25 fmpt yAy/xBCxAB:AC
27 20 26 sylib φxAB:AC
28 5 feq1i F:ACxAB:AC
29 27 28 sylibr φF:AC