Metamath Proof Explorer


Theorem issiga

Description: An alternative definition of the sigma-algebra, for a given base set. (Contributed by Thierry Arnoux, 19-Sep-2016)

Ref Expression
Assertion issiga S V S sigAlgebra O S 𝒫 O O S x S O x S x 𝒫 S x ω x S

Proof

Step Hyp Ref Expression
1 elfvex S sigAlgebra O O V
2 elex S sigAlgebra O S V
3 1 2 jca S sigAlgebra O O V S V
4 3 a1i S V S sigAlgebra O O V S V
5 simpr1 S 𝒫 O O S x S O x S x 𝒫 S x ω x S O S
6 elex O S O V
7 5 6 syl S 𝒫 O O S x S O x S x 𝒫 S x ω x S O V
8 7 a1i S V S 𝒫 O O S x S O x S x 𝒫 S x ω x S O V
9 8 anc2ri S V S 𝒫 O O S x S O x S x 𝒫 S x ω x S O V S V
10 df-siga sigAlgebra = o V s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s
11 sigaex s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s V
12 pweq o = O 𝒫 o = 𝒫 O
13 12 sseq2d o = O s 𝒫 o s 𝒫 O
14 sseq1 s = S s 𝒫 O S 𝒫 O
15 13 14 sylan9bb o = O s = S s 𝒫 o S 𝒫 O
16 eleq12 o = O s = S o s O S
17 simpr o = O s = S s = S
18 difeq1 o = O o x = O x
19 18 adantr o = O s = S o x = O x
20 19 eleq1d o = O s = S o x s O x s
21 eleq2 s = S O x s O x S
22 21 adantl o = O s = S O x s O x S
23 20 22 bitrd o = O s = S o x s O x S
24 17 23 raleqbidv o = O s = S x s o x s x S O x S
25 pweq s = S 𝒫 s = 𝒫 S
26 eleq2 s = S x s x S
27 26 imbi2d s = S x ω x s x ω x S
28 25 27 raleqbidv s = S x 𝒫 s x ω x s x 𝒫 S x ω x S
29 28 adantl o = O s = S x 𝒫 s x ω x s x 𝒫 S x ω x S
30 16 24 29 3anbi123d o = O s = S o s x s o x s x 𝒫 s x ω x s O S x S O x S x 𝒫 S x ω x S
31 15 30 anbi12d o = O s = S s 𝒫 o o s x s o x s x 𝒫 s x ω x s S 𝒫 O O S x S O x S x 𝒫 S x ω x S
32 10 11 31 abfmpel O V S V S sigAlgebra O S 𝒫 O O S x S O x S x 𝒫 S x ω x S
33 32 a1i S V O V S V S sigAlgebra O S 𝒫 O O S x S O x S x 𝒫 S x ω x S
34 4 9 33 pm5.21ndd S V S sigAlgebra O S 𝒫 O O S x S O x S x 𝒫 S x ω x S