Metamath Proof Explorer


Theorem issiga

Description: An alternative definition of the sigma-algebra, for a given base set. (Contributed by Thierry Arnoux, 19-Sep-2016)

Ref Expression
Assertion issiga SVSsigAlgebraOS𝒫OOSxSOxSx𝒫SxωxS

Proof

Step Hyp Ref Expression
1 elfvex SsigAlgebraOOV
2 elex SsigAlgebraOSV
3 1 2 jca SsigAlgebraOOVSV
4 3 a1i SVSsigAlgebraOOVSV
5 simpr1 S𝒫OOSxSOxSx𝒫SxωxSOS
6 elex OSOV
7 5 6 syl S𝒫OOSxSOxSx𝒫SxωxSOV
8 7 a1i SVS𝒫OOSxSOxSx𝒫SxωxSOV
9 8 anc2ri SVS𝒫OOSxSOxSx𝒫SxωxSOVSV
10 df-siga sigAlgebra=oVs|s𝒫oosxsoxsx𝒫sxωxs
11 sigaex s|s𝒫oosxsoxsx𝒫sxωxsV
12 pweq o=O𝒫o=𝒫O
13 12 sseq2d o=Os𝒫os𝒫O
14 sseq1 s=Ss𝒫OS𝒫O
15 13 14 sylan9bb o=Os=Ss𝒫oS𝒫O
16 eleq12 o=Os=SosOS
17 simpr o=Os=Ss=S
18 difeq1 o=Oox=Ox
19 18 adantr o=Os=Sox=Ox
20 19 eleq1d o=Os=SoxsOxs
21 eleq2 s=SOxsOxS
22 21 adantl o=Os=SOxsOxS
23 20 22 bitrd o=Os=SoxsOxS
24 17 23 raleqbidv o=Os=SxsoxsxSOxS
25 pweq s=S𝒫s=𝒫S
26 eleq2 s=SxsxS
27 26 imbi2d s=SxωxsxωxS
28 25 27 raleqbidv s=Sx𝒫sxωxsx𝒫SxωxS
29 28 adantl o=Os=Sx𝒫sxωxsx𝒫SxωxS
30 16 24 29 3anbi123d o=Os=Sosxsoxsx𝒫sxωxsOSxSOxSx𝒫SxωxS
31 15 30 anbi12d o=Os=Ss𝒫oosxsoxsx𝒫sxωxsS𝒫OOSxSOxSx𝒫SxωxS
32 10 11 31 abfmpel OVSVSsigAlgebraOS𝒫OOSxSOxSx𝒫SxωxS
33 32 a1i SVOVSVSsigAlgebraOS𝒫OOSxSOxSx𝒫SxωxS
34 4 9 33 pm5.21ndd SVSsigAlgebraOS𝒫OOSxSOxSx𝒫SxωxS