Metamath Proof Explorer


Theorem eleq12

Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999)

Ref Expression
Assertion eleq12 A=BC=DACBD

Proof

Step Hyp Ref Expression
1 eleq1 A=BACBC
2 eleq2 C=DBCBD
3 1 2 sylan9bb A=BC=DACBD