Metamath Proof Explorer


Theorem sigaex

Description: Lemma for issiga and isrnsiga . The class of sigma-algebras with base set o is a set. Note: a more generic version with ( O e. _V -> ... ) could be useful for sigaval . (Contributed by Thierry Arnoux, 24-Oct-2016)

Ref Expression
Assertion sigaex s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s V

Proof

Step Hyp Ref Expression
1 df-rab s 𝒫 𝒫 o | o s x s o x s x 𝒫 s x ω x s = s | s 𝒫 𝒫 o o s x s o x s x 𝒫 s x ω x s
2 velpw s 𝒫 𝒫 o s 𝒫 o
3 2 anbi1i s 𝒫 𝒫 o o s x s o x s x 𝒫 s x ω x s s 𝒫 o o s x s o x s x 𝒫 s x ω x s
4 3 abbii s | s 𝒫 𝒫 o o s x s o x s x 𝒫 s x ω x s = s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s
5 1 4 eqtri s 𝒫 𝒫 o | o s x s o x s x 𝒫 s x ω x s = s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s
6 vex o V
7 pwexg o V 𝒫 o V
8 pwexg 𝒫 o V 𝒫 𝒫 o V
9 6 7 8 mp2b 𝒫 𝒫 o V
10 9 rabex s 𝒫 𝒫 o | o s x s o x s x 𝒫 s x ω x s V
11 5 10 eqeltrri s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s V