Metamath Proof Explorer


Theorem sigaval

Description: The set of sigma-algebra with a given base set. (Contributed by Thierry Arnoux, 23-Sep-2016)

Ref Expression
Assertion sigaval O V sigAlgebra O = s | s 𝒫 O O s x s O x s x 𝒫 s x ω x s

Proof

Step Hyp Ref Expression
1 df-rab s 𝒫 𝒫 O | O s x s O x s x 𝒫 s x ω x s = s | s 𝒫 𝒫 O O s x s O x s x 𝒫 s x ω x s
2 velpw s 𝒫 𝒫 O s 𝒫 O
3 2 anbi1i s 𝒫 𝒫 O O s x s O x s x 𝒫 s x ω x s s 𝒫 O O s x s O x s x 𝒫 s x ω x s
4 3 abbii s | s 𝒫 𝒫 O O s x s O x s x 𝒫 s x ω x s = s | s 𝒫 O O s x s O x s x 𝒫 s x ω x s
5 1 4 eqtri s 𝒫 𝒫 O | O s x s O x s x 𝒫 s x ω x s = s | s 𝒫 O O s x s O x s x 𝒫 s x ω x s
6 pwexg O V 𝒫 O V
7 pwexg 𝒫 O V 𝒫 𝒫 O V
8 rabexg 𝒫 𝒫 O V s 𝒫 𝒫 O | O s x s O x s x 𝒫 s x ω x s V
9 6 7 8 3syl O V s 𝒫 𝒫 O | O s x s O x s x 𝒫 s x ω x s V
10 5 9 eqeltrrid O V s | s 𝒫 O O s x s O x s x 𝒫 s x ω x s V
11 pweq o = O 𝒫 o = 𝒫 O
12 11 sseq2d o = O s 𝒫 o s 𝒫 O
13 eleq1 o = O o s O s
14 difeq1 o = O o x = O x
15 14 eleq1d o = O o x s O x s
16 15 ralbidv o = O x s o x s x s O x s
17 13 16 3anbi12d o = O o s x s o x s x 𝒫 s x ω x s O s x s O x s x 𝒫 s x ω x s
18 12 17 anbi12d o = O s 𝒫 o o s x s o x s x 𝒫 s x ω x s s 𝒫 O O s x s O x s x 𝒫 s x ω x s
19 18 abbidv o = O s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s = s | s 𝒫 O O s x s O x s x 𝒫 s x ω x s
20 df-siga sigAlgebra = o V s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s
21 19 20 fvmptg O V s | s 𝒫 O O s x s O x s x 𝒫 s x ω x s V sigAlgebra O = s | s 𝒫 O O s x s O x s x 𝒫 s x ω x s
22 10 21 mpdan O V sigAlgebra O = s | s 𝒫 O O s x s O x s x 𝒫 s x ω x s