| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rab |
⊢ { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) } = { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } |
| 2 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 𝒫 𝑂 ↔ 𝑠 ⊆ 𝒫 𝑂 ) |
| 3 |
2
|
anbi1i |
⊢ ( ( 𝑠 ∈ 𝒫 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) ↔ ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) ) |
| 4 |
3
|
abbii |
⊢ { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } = { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } |
| 5 |
1 4
|
eqtri |
⊢ { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) } = { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } |
| 6 |
|
pwexg |
⊢ ( 𝑂 ∈ V → 𝒫 𝑂 ∈ V ) |
| 7 |
|
pwexg |
⊢ ( 𝒫 𝑂 ∈ V → 𝒫 𝒫 𝑂 ∈ V ) |
| 8 |
|
rabexg |
⊢ ( 𝒫 𝒫 𝑂 ∈ V → { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) } ∈ V ) |
| 9 |
6 7 8
|
3syl |
⊢ ( 𝑂 ∈ V → { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) } ∈ V ) |
| 10 |
5 9
|
eqeltrrid |
⊢ ( 𝑂 ∈ V → { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } ∈ V ) |
| 11 |
|
pweq |
⊢ ( 𝑜 = 𝑂 → 𝒫 𝑜 = 𝒫 𝑂 ) |
| 12 |
11
|
sseq2d |
⊢ ( 𝑜 = 𝑂 → ( 𝑠 ⊆ 𝒫 𝑜 ↔ 𝑠 ⊆ 𝒫 𝑂 ) ) |
| 13 |
|
eleq1 |
⊢ ( 𝑜 = 𝑂 → ( 𝑜 ∈ 𝑠 ↔ 𝑂 ∈ 𝑠 ) ) |
| 14 |
|
difeq1 |
⊢ ( 𝑜 = 𝑂 → ( 𝑜 ∖ 𝑥 ) = ( 𝑂 ∖ 𝑥 ) ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝑜 = 𝑂 → ( ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ↔ ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) ) |
| 16 |
15
|
ralbidv |
⊢ ( 𝑜 = 𝑂 → ( ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ↔ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) ) |
| 17 |
13 16
|
3anbi12d |
⊢ ( 𝑜 = 𝑂 → ( ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ↔ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) ) |
| 18 |
12 17
|
anbi12d |
⊢ ( 𝑜 = 𝑂 → ( ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) ↔ ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) ) ) |
| 19 |
18
|
abbidv |
⊢ ( 𝑜 = 𝑂 → { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } = { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } ) |
| 20 |
|
df-siga |
⊢ sigAlgebra = ( 𝑜 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } ) |
| 21 |
19 20
|
fvmptg |
⊢ ( ( 𝑂 ∈ V ∧ { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } ∈ V ) → ( sigAlgebra ‘ 𝑂 ) = { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } ) |
| 22 |
10 21
|
mpdan |
⊢ ( 𝑂 ∈ V → ( sigAlgebra ‘ 𝑂 ) = { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } ) |