Metamath Proof Explorer


Theorem difeq1

Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion difeq1 A=BAC=BC

Proof

Step Hyp Ref Expression
1 rabeq A=BxA|¬xC=xB|¬xC
2 dfdif2 AC=xA|¬xC
3 dfdif2 BC=xB|¬xC
4 1 2 3 3eqtr4g A=BAC=BC