Step |
Hyp |
Ref |
Expression |
1 |
|
df-siga |
⊢ sigAlgebra = ( 𝑜 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } ) |
2 |
|
sigaex |
⊢ { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) } ∈ V |
3 |
|
sseq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ⊆ 𝒫 𝑜 ↔ 𝑆 ⊆ 𝒫 𝑜 ) ) |
4 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( 𝑜 ∈ 𝑠 ↔ 𝑜 ∈ 𝑆 ) ) |
5 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ↔ ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ) ) |
6 |
5
|
raleqbi1dv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ↔ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ) ) |
7 |
|
pweq |
⊢ ( 𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆 ) |
8 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( ∪ 𝑥 ∈ 𝑠 ↔ ∪ 𝑥 ∈ 𝑆 ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ↔ ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) |
10 |
7 9
|
raleqbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) |
11 |
4 6 10
|
3anbi123d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ↔ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
12 |
3 11
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑜 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) ↔ ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |
13 |
1 2 12
|
abfmpunirn |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra ↔ ( 𝑆 ∈ V ∧ ∃ 𝑜 ∈ V ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |
14 |
|
rexv |
⊢ ( ∃ 𝑜 ∈ V ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ↔ ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
15 |
14
|
anbi2i |
⊢ ( ( 𝑆 ∈ V ∧ ∃ 𝑜 ∈ V ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ↔ ( 𝑆 ∈ V ∧ ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |
16 |
13 15
|
bitri |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra ↔ ( 𝑆 ∈ V ∧ ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |