Metamath Proof Explorer


Theorem isrnsiga

Description: The property of being a sigma-algebra on an indefinite base set. (Contributed by Thierry Arnoux, 3-Sep-2016) (Proof shortened by Thierry Arnoux, 23-Oct-2016)

Ref Expression
Assertion isrnsiga ( 𝑆 ran sigAlgebra ↔ ( 𝑆 ∈ V ∧ ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 df-siga sigAlgebra = ( 𝑜 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑠 ∧ ∀ 𝑥𝑠 ( 𝑜𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → 𝑥𝑠 ) ) ) } )
2 sigaex { 𝑠 ∣ ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑠 ∧ ∀ 𝑥𝑠 ( 𝑜𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → 𝑥𝑠 ) ) ) } ∈ V
3 sseq1 ( 𝑠 = 𝑆 → ( 𝑠 ⊆ 𝒫 𝑜𝑆 ⊆ 𝒫 𝑜 ) )
4 eleq2 ( 𝑠 = 𝑆 → ( 𝑜𝑠𝑜𝑆 ) )
5 eleq2 ( 𝑠 = 𝑆 → ( ( 𝑜𝑥 ) ∈ 𝑠 ↔ ( 𝑜𝑥 ) ∈ 𝑆 ) )
6 5 raleqbi1dv ( 𝑠 = 𝑆 → ( ∀ 𝑥𝑠 ( 𝑜𝑥 ) ∈ 𝑠 ↔ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ) )
7 pweq ( 𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆 )
8 eleq2 ( 𝑠 = 𝑆 → ( 𝑥𝑠 𝑥𝑆 ) )
9 8 imbi2d ( 𝑠 = 𝑆 → ( ( 𝑥 ≼ ω → 𝑥𝑠 ) ↔ ( 𝑥 ≼ ω → 𝑥𝑆 ) ) )
10 7 9 raleqbidv ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → 𝑥𝑠 ) ↔ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) )
11 4 6 10 3anbi123d ( 𝑠 = 𝑆 → ( ( 𝑜𝑠 ∧ ∀ 𝑥𝑠 ( 𝑜𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → 𝑥𝑠 ) ) ↔ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
12 3 11 anbi12d ( 𝑠 = 𝑆 → ( ( 𝑠 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑠 ∧ ∀ 𝑥𝑠 ( 𝑜𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → 𝑥𝑠 ) ) ) ↔ ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )
13 1 2 12 abfmpunirn ( 𝑆 ran sigAlgebra ↔ ( 𝑆 ∈ V ∧ ∃ 𝑜 ∈ V ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )
14 rexv ( ∃ 𝑜 ∈ V ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ↔ ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
15 14 anbi2i ( ( 𝑆 ∈ V ∧ ∃ 𝑜 ∈ V ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) ↔ ( 𝑆 ∈ V ∧ ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )
16 13 15 bitri ( 𝑆 ran sigAlgebra ↔ ( 𝑆 ∈ V ∧ ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )