Metamath Proof Explorer


Theorem unibrsiga

Description: The union of the Borel Algebra is the set of real numbers. (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion unibrsiga 𝔅 =

Proof

Step Hyp Ref Expression
1 retop topGen ran . Top
2 unisg topGen ran . Top 𝛔 topGen ran . = topGen ran .
3 1 2 ax-mp 𝛔 topGen ran . = topGen ran .
4 df-brsiga 𝔅 = 𝛔 topGen ran .
5 4 unieqi 𝔅 = 𝛔 topGen ran .
6 uniretop = topGen ran .
7 3 5 6 3eqtr4i 𝔅 =