Description: A Borel Algebra contains all closed sets of its base topology. (Contributed by Thierry Arnoux, 27-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | cldssbrsiga | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | cldss | |
3 | 2 | adantl | |
4 | dfss4 | |
|
5 | 3 4 | sylib | |
6 | 1 | topopn | |
7 | 1 | difopn | |
8 | 6 7 | sylan | |
9 | id | |
|
10 | 9 | sgsiga | |
11 | 10 | adantr | |
12 | elex | |
|
13 | sigagensiga | |
|
14 | baselsiga | |
|
15 | 12 13 14 | 3syl | |
16 | 15 | adantr | |
17 | elsigagen | |
|
18 | difelsiga | |
|
19 | 11 16 17 18 | syl3anc | |
20 | 8 19 | syldan | |
21 | 5 20 | eqeltrrd | |
22 | 21 | ex | |
23 | 22 | ssrdv | |