Metamath Proof Explorer


Theorem sigagensiga

Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion sigagensiga A V 𝛔 A sigAlgebra A

Proof

Step Hyp Ref Expression
1 sigagenval A V 𝛔 A = s sigAlgebra A | A s
2 fvex 𝛔 A V
3 1 2 eqeltrrdi A V s sigAlgebra A | A s V
4 intex s sigAlgebra A | A s s sigAlgebra A | A s V
5 3 4 sylibr A V s sigAlgebra A | A s
6 ssrab2 s sigAlgebra A | A s sigAlgebra A
7 6 a1i A V s sigAlgebra A | A s sigAlgebra A
8 fvex sigAlgebra A V
9 8 elpw2 s sigAlgebra A | A s 𝒫 sigAlgebra A s sigAlgebra A | A s sigAlgebra A
10 7 9 sylibr A V s sigAlgebra A | A s 𝒫 sigAlgebra A
11 insiga s sigAlgebra A | A s s sigAlgebra A | A s 𝒫 sigAlgebra A s sigAlgebra A | A s sigAlgebra A
12 5 10 11 syl2anc A V s sigAlgebra A | A s sigAlgebra A
13 1 12 eqeltrd A V 𝛔 A sigAlgebra A