Metamath Proof Explorer


Theorem sigagensiga

Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion sigagensiga AV𝛔AsigAlgebraA

Proof

Step Hyp Ref Expression
1 sigagenval AV𝛔A=ssigAlgebraA|As
2 fvex 𝛔AV
3 1 2 eqeltrrdi AVssigAlgebraA|AsV
4 intex ssigAlgebraA|AsssigAlgebraA|AsV
5 3 4 sylibr AVssigAlgebraA|As
6 ssrab2 ssigAlgebraA|AssigAlgebraA
7 6 a1i AVssigAlgebraA|AssigAlgebraA
8 fvex sigAlgebraAV
9 8 elpw2 ssigAlgebraA|As𝒫sigAlgebraAssigAlgebraA|AssigAlgebraA
10 7 9 sylibr AVssigAlgebraA|As𝒫sigAlgebraA
11 insiga ssigAlgebraA|AsssigAlgebraA|As𝒫sigAlgebraAssigAlgebraA|AssigAlgebraA
12 5 10 11 syl2anc AVssigAlgebraA|AssigAlgebraA
13 1 12 eqeltrd AV𝛔AsigAlgebraA