Metamath Proof Explorer


Theorem insiga

Description: The intersection of a collection of sigma-algebras of same base is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion insiga A A 𝒫 sigAlgebra O A sigAlgebra O

Proof

Step Hyp Ref Expression
1 intex A A V
2 1 biimpi A A V
3 2 adantr A A 𝒫 sigAlgebra O A V
4 intssuni A A A
5 4 adantr A A 𝒫 sigAlgebra O A A
6 simpr A A 𝒫 sigAlgebra O A 𝒫 sigAlgebra O
7 elpwi A 𝒫 sigAlgebra O A sigAlgebra O
8 sigasspw s sigAlgebra O s 𝒫 O
9 velpw s 𝒫 𝒫 O s 𝒫 O
10 8 9 sylibr s sigAlgebra O s 𝒫 𝒫 O
11 10 ssriv sigAlgebra O 𝒫 𝒫 O
12 7 11 sstrdi A 𝒫 sigAlgebra O A 𝒫 𝒫 O
13 6 12 syl A A 𝒫 sigAlgebra O A 𝒫 𝒫 O
14 sspwuni A 𝒫 𝒫 O A 𝒫 O
15 13 14 sylib A A 𝒫 sigAlgebra O A 𝒫 O
16 5 15 sstrd A A 𝒫 sigAlgebra O A 𝒫 O
17 simpr A A 𝒫 sigAlgebra O s A s A
18 simplr A A 𝒫 sigAlgebra O s A A 𝒫 sigAlgebra O
19 elelpwi s A A 𝒫 sigAlgebra O s sigAlgebra O
20 17 18 19 syl2anc A A 𝒫 sigAlgebra O s A s sigAlgebra O
21 vex s V
22 issiga s V s sigAlgebra O s 𝒫 O O s x s O x s x 𝒫 s x ω x s
23 21 22 ax-mp s sigAlgebra O s 𝒫 O O s x s O x s x 𝒫 s x ω x s
24 20 23 sylib A A 𝒫 sigAlgebra O s A s 𝒫 O O s x s O x s x 𝒫 s x ω x s
25 24 simprd A A 𝒫 sigAlgebra O s A O s x s O x s x 𝒫 s x ω x s
26 25 simp1d A A 𝒫 sigAlgebra O s A O s
27 26 ralrimiva A A 𝒫 sigAlgebra O s A O s
28 n0 A s s A
29 28 biimpi A s s A
30 29 adantr A A 𝒫 sigAlgebra O s s A
31 20 ex A A 𝒫 sigAlgebra O s A s sigAlgebra O
32 31 eximdv A A 𝒫 sigAlgebra O s s A s s sigAlgebra O
33 30 32 mpd A A 𝒫 sigAlgebra O s s sigAlgebra O
34 elfvex s sigAlgebra O O V
35 34 exlimiv s s sigAlgebra O O V
36 33 35 syl A A 𝒫 sigAlgebra O O V
37 elintg O V O A s A O s
38 36 37 syl A A 𝒫 sigAlgebra O O A s A O s
39 27 38 mpbird A A 𝒫 sigAlgebra O O A
40 simpll A A 𝒫 sigAlgebra O x A s A A A 𝒫 sigAlgebra O
41 simpr A A 𝒫 sigAlgebra O x A s A s A
42 40 41 jca A A 𝒫 sigAlgebra O x A s A A A 𝒫 sigAlgebra O s A
43 elinti x A s A x s
44 43 imp x A s A x s
45 44 adantll A A 𝒫 sigAlgebra O x A s A x s
46 25 simp2d A A 𝒫 sigAlgebra O s A x s O x s
47 46 r19.21bi A A 𝒫 sigAlgebra O s A x s O x s
48 42 45 47 syl2anc A A 𝒫 sigAlgebra O x A s A O x s
49 48 ralrimiva A A 𝒫 sigAlgebra O x A s A O x s
50 difexg O V O x V
51 36 50 syl A A 𝒫 sigAlgebra O O x V
52 51 adantr A A 𝒫 sigAlgebra O x A O x V
53 elintg O x V O x A s A O x s
54 52 53 syl A A 𝒫 sigAlgebra O x A O x A s A O x s
55 49 54 mpbird A A 𝒫 sigAlgebra O x A O x A
56 55 ralrimiva A A 𝒫 sigAlgebra O x A O x A
57 simplll A A 𝒫 sigAlgebra O x 𝒫 A x ω s A A A 𝒫 sigAlgebra O
58 simpr A A 𝒫 sigAlgebra O x 𝒫 A x ω s A s A
59 57 58 jca A A 𝒫 sigAlgebra O x 𝒫 A x ω s A A A 𝒫 sigAlgebra O s A
60 simpllr A A 𝒫 sigAlgebra O x 𝒫 A x ω s A x 𝒫 A
61 elpwi x 𝒫 A x A
62 intss1 s A A s
63 61 62 sylan9ss x 𝒫 A s A x s
64 velpw x 𝒫 s x s
65 63 64 sylibr x 𝒫 A s A x 𝒫 s
66 60 65 sylancom A A 𝒫 sigAlgebra O x 𝒫 A x ω s A x 𝒫 s
67 59 66 jca A A 𝒫 sigAlgebra O x 𝒫 A x ω s A A A 𝒫 sigAlgebra O s A x 𝒫 s
68 simplr A A 𝒫 sigAlgebra O x 𝒫 A x ω s A x ω
69 25 simp3d A A 𝒫 sigAlgebra O s A x 𝒫 s x ω x s
70 69 r19.21bi A A 𝒫 sigAlgebra O s A x 𝒫 s x ω x s
71 67 68 70 sylc A A 𝒫 sigAlgebra O x 𝒫 A x ω s A x s
72 71 ralrimiva A A 𝒫 sigAlgebra O x 𝒫 A x ω s A x s
73 uniexg x 𝒫 A x V
74 73 ad2antlr A A 𝒫 sigAlgebra O x 𝒫 A x ω x V
75 elintg x V x A s A x s
76 74 75 syl A A 𝒫 sigAlgebra O x 𝒫 A x ω x A s A x s
77 72 76 mpbird A A 𝒫 sigAlgebra O x 𝒫 A x ω x A
78 77 ex A A 𝒫 sigAlgebra O x 𝒫 A x ω x A
79 78 ralrimiva A A 𝒫 sigAlgebra O x 𝒫 A x ω x A
80 39 56 79 3jca A A 𝒫 sigAlgebra O O A x A O x A x 𝒫 A x ω x A
81 issiga A V A sigAlgebra O A 𝒫 O O A x A O x A x 𝒫 A x ω x A
82 81 biimpar A V A 𝒫 O O A x A O x A x 𝒫 A x ω x A A sigAlgebra O
83 3 16 80 82 syl12anc A A 𝒫 sigAlgebra O A sigAlgebra O