Metamath Proof Explorer


Theorem insiga

Description: The intersection of a collection of sigma-algebras of same base is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion insiga A A 𝒫 sigAlgebra O A sigAlgebra O

Proof

Step Hyp Ref Expression
1 intex A A V
2 1 biimpi A A V
3 2 adantr A A 𝒫 sigAlgebra O A V
4 intssuni A A A
5 4 adantr A A 𝒫 sigAlgebra O A A
6 simpr A A 𝒫 sigAlgebra O A 𝒫 sigAlgebra O
7 elpwi A 𝒫 sigAlgebra O A sigAlgebra O
8 sigasspw s sigAlgebra O s 𝒫 O
9 velpw s 𝒫 𝒫 O s 𝒫 O
10 8 9 sylibr s sigAlgebra O s 𝒫 𝒫 O
11 10 ssriv sigAlgebra O 𝒫 𝒫 O
12 7 11 sstrdi A 𝒫 sigAlgebra O A 𝒫 𝒫 O
13 6 12 syl A A 𝒫 sigAlgebra O A 𝒫 𝒫 O
14 sspwuni A 𝒫 𝒫 O A 𝒫 O
15 13 14 sylib A A 𝒫 sigAlgebra O A 𝒫 O
16 5 15 sstrd A A 𝒫 sigAlgebra O A 𝒫 O
17 simpr A A 𝒫 sigAlgebra O s A s A
18 simplr A A 𝒫 sigAlgebra O s A A 𝒫 sigAlgebra O
19 elelpwi s A A 𝒫 sigAlgebra O s sigAlgebra O
20 17 18 19 syl2anc A A 𝒫 sigAlgebra O s A s sigAlgebra O
21 vex s V
22 issiga s V s sigAlgebra O s 𝒫 O O s x s O x s x 𝒫 s x ω x s
23 21 22 ax-mp s sigAlgebra O s 𝒫 O O s x s O x s x 𝒫 s x ω x s
24 20 23 sylib A A 𝒫 sigAlgebra O s A s 𝒫 O O s x s O x s x 𝒫 s x ω x s
25 24 simprd A A 𝒫 sigAlgebra O s A O s x s O x s x 𝒫 s x ω x s
26 25 simp1d A A 𝒫 sigAlgebra O s A O s
27 26 ralrimiva A A 𝒫 sigAlgebra O s A O s
28 n0 A s s A
29 28 biimpi A s s A
30 29 adantr A A 𝒫 sigAlgebra O s s A
31 20 ex A A 𝒫 sigAlgebra O s A s sigAlgebra O
32 31 eximdv A A 𝒫 sigAlgebra O s s A s s sigAlgebra O
33 30 32 mpd A A 𝒫 sigAlgebra O s s sigAlgebra O
34 elfvex s sigAlgebra O O V
35 34 exlimiv s s sigAlgebra O O V
36 33 35 syl A A 𝒫 sigAlgebra O O V
37 elintg O V O A s A O s
38 36 37 syl A A 𝒫 sigAlgebra O O A s A O s
39 27 38 mpbird A A 𝒫 sigAlgebra O O A
40 simpll A A 𝒫 sigAlgebra O x A s A A A 𝒫 sigAlgebra O
41 simpr A A 𝒫 sigAlgebra O x A s A s A
42 40 41 jca A A 𝒫 sigAlgebra O x A s A A A 𝒫 sigAlgebra O s A
43 elinti x A s A x s
44 43 imp x A s A x s
45 44 adantll A A 𝒫 sigAlgebra O x A s A x s
46 25 simp2d A A 𝒫 sigAlgebra O s A x s O x s
47 46 r19.21bi A A 𝒫 sigAlgebra O s A x s O x s
48 42 45 47 syl2anc A A 𝒫 sigAlgebra O x A s A O x s
49 48 ralrimiva A A 𝒫 sigAlgebra O x A s A O x s
50 36 difexd A A 𝒫 sigAlgebra O O x V
51 50 adantr A A 𝒫 sigAlgebra O x A O x V
52 elintg O x V O x A s A O x s
53 51 52 syl A A 𝒫 sigAlgebra O x A O x A s A O x s
54 49 53 mpbird A A 𝒫 sigAlgebra O x A O x A
55 54 ralrimiva A A 𝒫 sigAlgebra O x A O x A
56 simplll A A 𝒫 sigAlgebra O x 𝒫 A x ω s A A A 𝒫 sigAlgebra O
57 simpr A A 𝒫 sigAlgebra O x 𝒫 A x ω s A s A
58 56 57 jca A A 𝒫 sigAlgebra O x 𝒫 A x ω s A A A 𝒫 sigAlgebra O s A
59 simpllr A A 𝒫 sigAlgebra O x 𝒫 A x ω s A x 𝒫 A
60 elpwi x 𝒫 A x A
61 intss1 s A A s
62 60 61 sylan9ss x 𝒫 A s A x s
63 velpw x 𝒫 s x s
64 62 63 sylibr x 𝒫 A s A x 𝒫 s
65 59 64 sylancom A A 𝒫 sigAlgebra O x 𝒫 A x ω s A x 𝒫 s
66 58 65 jca A A 𝒫 sigAlgebra O x 𝒫 A x ω s A A A 𝒫 sigAlgebra O s A x 𝒫 s
67 simplr A A 𝒫 sigAlgebra O x 𝒫 A x ω s A x ω
68 25 simp3d A A 𝒫 sigAlgebra O s A x 𝒫 s x ω x s
69 68 r19.21bi A A 𝒫 sigAlgebra O s A x 𝒫 s x ω x s
70 66 67 69 sylc A A 𝒫 sigAlgebra O x 𝒫 A x ω s A x s
71 70 ralrimiva A A 𝒫 sigAlgebra O x 𝒫 A x ω s A x s
72 uniexg x 𝒫 A x V
73 72 ad2antlr A A 𝒫 sigAlgebra O x 𝒫 A x ω x V
74 elintg x V x A s A x s
75 73 74 syl A A 𝒫 sigAlgebra O x 𝒫 A x ω x A s A x s
76 71 75 mpbird A A 𝒫 sigAlgebra O x 𝒫 A x ω x A
77 76 ex A A 𝒫 sigAlgebra O x 𝒫 A x ω x A
78 77 ralrimiva A A 𝒫 sigAlgebra O x 𝒫 A x ω x A
79 39 55 78 3jca A A 𝒫 sigAlgebra O O A x A O x A x 𝒫 A x ω x A
80 issiga A V A sigAlgebra O A 𝒫 O O A x A O x A x 𝒫 A x ω x A
81 80 biimpar A V A 𝒫 O O A x A O x A x 𝒫 A x ω x A A sigAlgebra O
82 3 16 79 81 syl12anc A A 𝒫 sigAlgebra O A sigAlgebra O