Step |
Hyp |
Ref |
Expression |
1 |
|
intex |
⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) |
2 |
1
|
biimpi |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ∈ V ) |
3 |
2
|
adantr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∩ 𝐴 ∈ V ) |
4 |
|
intssuni |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
6 |
|
simpr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) |
7 |
|
elpwi |
⊢ ( 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) → 𝐴 ⊆ ( sigAlgebra ‘ 𝑂 ) ) |
8 |
|
sigasspw |
⊢ ( 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑠 ⊆ 𝒫 𝑂 ) |
9 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 𝒫 𝑂 ↔ 𝑠 ⊆ 𝒫 𝑂 ) |
10 |
8 9
|
sylibr |
⊢ ( 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑠 ∈ 𝒫 𝒫 𝑂 ) |
11 |
10
|
ssriv |
⊢ ( sigAlgebra ‘ 𝑂 ) ⊆ 𝒫 𝒫 𝑂 |
12 |
7 11
|
sstrdi |
⊢ ( 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) → 𝐴 ⊆ 𝒫 𝒫 𝑂 ) |
13 |
6 12
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → 𝐴 ⊆ 𝒫 𝒫 𝑂 ) |
14 |
|
sspwuni |
⊢ ( 𝐴 ⊆ 𝒫 𝒫 𝑂 ↔ ∪ 𝐴 ⊆ 𝒫 𝑂 ) |
15 |
13 14
|
sylib |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∪ 𝐴 ⊆ 𝒫 𝑂 ) |
16 |
5 15
|
sstrd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∩ 𝐴 ⊆ 𝒫 𝑂 ) |
17 |
|
simpr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ 𝐴 ) |
18 |
|
simplr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) |
19 |
|
elelpwi |
⊢ ( ( 𝑠 ∈ 𝐴 ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
20 |
17 18 19
|
syl2anc |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
21 |
|
vex |
⊢ 𝑠 ∈ V |
22 |
|
issiga |
⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) ) ) |
23 |
21 22
|
ax-mp |
⊢ ( 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) ) |
24 |
20 23
|
sylib |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) ) |
25 |
24
|
simprd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) |
26 |
25
|
simp1d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → 𝑂 ∈ 𝑠 ) |
27 |
26
|
ralrimiva |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∀ 𝑠 ∈ 𝐴 𝑂 ∈ 𝑠 ) |
28 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑠 𝑠 ∈ 𝐴 ) |
29 |
28
|
biimpi |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑠 𝑠 ∈ 𝐴 ) |
30 |
29
|
adantr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∃ 𝑠 𝑠 ∈ 𝐴 ) |
31 |
20
|
ex |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ( 𝑠 ∈ 𝐴 → 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ) ) |
32 |
31
|
eximdv |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ( ∃ 𝑠 𝑠 ∈ 𝐴 → ∃ 𝑠 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ) ) |
33 |
30 32
|
mpd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∃ 𝑠 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
34 |
|
elfvex |
⊢ ( 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑂 ∈ V ) |
35 |
34
|
exlimiv |
⊢ ( ∃ 𝑠 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑂 ∈ V ) |
36 |
33 35
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → 𝑂 ∈ V ) |
37 |
|
elintg |
⊢ ( 𝑂 ∈ V → ( 𝑂 ∈ ∩ 𝐴 ↔ ∀ 𝑠 ∈ 𝐴 𝑂 ∈ 𝑠 ) ) |
38 |
36 37
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ( 𝑂 ∈ ∩ 𝐴 ↔ ∀ 𝑠 ∈ 𝐴 𝑂 ∈ 𝑠 ) ) |
39 |
27 38
|
mpbird |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → 𝑂 ∈ ∩ 𝐴 ) |
40 |
|
simpll |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ) |
41 |
|
simpr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ 𝐴 ) |
42 |
40 41
|
jca |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) ) |
43 |
|
elinti |
⊢ ( 𝑥 ∈ ∩ 𝐴 → ( 𝑠 ∈ 𝐴 → 𝑥 ∈ 𝑠 ) ) |
44 |
43
|
imp |
⊢ ( ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ∈ 𝑠 ) |
45 |
44
|
adantll |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ∈ 𝑠 ) |
46 |
25
|
simp2d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) |
47 |
46
|
r19.21bi |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑠 ) → ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) |
48 |
42 45 47
|
syl2anc |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) |
49 |
48
|
ralrimiva |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ∀ 𝑠 ∈ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) |
50 |
36
|
difexd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ( 𝑂 ∖ 𝑥 ) ∈ V ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ( 𝑂 ∖ 𝑥 ) ∈ V ) |
52 |
|
elintg |
⊢ ( ( 𝑂 ∖ 𝑥 ) ∈ V → ( ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ↔ ∀ 𝑠 ∈ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) ) |
53 |
51 52
|
syl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ( ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ↔ ∀ 𝑠 ∈ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) ) |
54 |
49 53
|
mpbird |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ) |
55 |
54
|
ralrimiva |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∀ 𝑥 ∈ ∩ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ) |
56 |
|
simplll |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ) |
57 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ 𝐴 ) |
58 |
56 57
|
jca |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) ) |
59 |
|
simpllr |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ∈ 𝒫 ∩ 𝐴 ) |
60 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 ∩ 𝐴 → 𝑥 ⊆ ∩ 𝐴 ) |
61 |
|
intss1 |
⊢ ( 𝑠 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑠 ) |
62 |
60 61
|
sylan9ss |
⊢ ( ( 𝑥 ∈ 𝒫 ∩ 𝐴 ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ⊆ 𝑠 ) |
63 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝑠 ↔ 𝑥 ⊆ 𝑠 ) |
64 |
62 63
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝒫 ∩ 𝐴 ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ∈ 𝒫 𝑠 ) |
65 |
59 64
|
sylancom |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ∈ 𝒫 𝑠 ) |
66 |
58 65
|
jca |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝑠 ) ) |
67 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ≼ ω ) |
68 |
25
|
simp3d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) |
69 |
68
|
r19.21bi |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝑠 ) → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) |
70 |
66 67 69
|
sylc |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → ∪ 𝑥 ∈ 𝑠 ) |
71 |
70
|
ralrimiva |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) → ∀ 𝑠 ∈ 𝐴 ∪ 𝑥 ∈ 𝑠 ) |
72 |
|
uniexg |
⊢ ( 𝑥 ∈ 𝒫 ∩ 𝐴 → ∪ 𝑥 ∈ V ) |
73 |
72
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ V ) |
74 |
|
elintg |
⊢ ( ∪ 𝑥 ∈ V → ( ∪ 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑠 ∈ 𝐴 ∪ 𝑥 ∈ 𝑠 ) ) |
75 |
73 74
|
syl |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) → ( ∪ 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑠 ∈ 𝐴 ∪ 𝑥 ∈ 𝑠 ) ) |
76 |
71 75
|
mpbird |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ ∩ 𝐴 ) |
77 |
76
|
ex |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ∩ 𝐴 ) ) |
78 |
77
|
ralrimiva |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∀ 𝑥 ∈ 𝒫 ∩ 𝐴 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ∩ 𝐴 ) ) |
79 |
39 55 78
|
3jca |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ( 𝑂 ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ ∩ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 ∩ 𝐴 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ∩ 𝐴 ) ) ) |
80 |
|
issiga |
⊢ ( ∩ 𝐴 ∈ V → ( ∩ 𝐴 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( ∩ 𝐴 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ ∩ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 ∩ 𝐴 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ∩ 𝐴 ) ) ) ) ) |
81 |
80
|
biimpar |
⊢ ( ( ∩ 𝐴 ∈ V ∧ ( ∩ 𝐴 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ ∩ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 ∩ 𝐴 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ∩ 𝐴 ) ) ) ) → ∩ 𝐴 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
82 |
3 16 79 81
|
syl12anc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∩ 𝐴 ∈ ( sigAlgebra ‘ 𝑂 ) ) |