| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intex |
⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) |
| 2 |
1
|
biimpi |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ∈ V ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∩ 𝐴 ∈ V ) |
| 4 |
|
intssuni |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
| 6 |
|
simpr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) |
| 7 |
|
elpwi |
⊢ ( 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) → 𝐴 ⊆ ( sigAlgebra ‘ 𝑂 ) ) |
| 8 |
|
sigasspw |
⊢ ( 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑠 ⊆ 𝒫 𝑂 ) |
| 9 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 𝒫 𝑂 ↔ 𝑠 ⊆ 𝒫 𝑂 ) |
| 10 |
8 9
|
sylibr |
⊢ ( 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑠 ∈ 𝒫 𝒫 𝑂 ) |
| 11 |
10
|
ssriv |
⊢ ( sigAlgebra ‘ 𝑂 ) ⊆ 𝒫 𝒫 𝑂 |
| 12 |
7 11
|
sstrdi |
⊢ ( 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) → 𝐴 ⊆ 𝒫 𝒫 𝑂 ) |
| 13 |
6 12
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → 𝐴 ⊆ 𝒫 𝒫 𝑂 ) |
| 14 |
|
sspwuni |
⊢ ( 𝐴 ⊆ 𝒫 𝒫 𝑂 ↔ ∪ 𝐴 ⊆ 𝒫 𝑂 ) |
| 15 |
13 14
|
sylib |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∪ 𝐴 ⊆ 𝒫 𝑂 ) |
| 16 |
5 15
|
sstrd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∩ 𝐴 ⊆ 𝒫 𝑂 ) |
| 17 |
|
simpr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ 𝐴 ) |
| 18 |
|
simplr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) |
| 19 |
|
elelpwi |
⊢ ( ( 𝑠 ∈ 𝐴 ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
| 20 |
17 18 19
|
syl2anc |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
| 21 |
|
vex |
⊢ 𝑠 ∈ V |
| 22 |
|
issiga |
⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) ) ) |
| 23 |
21 22
|
ax-mp |
⊢ ( 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) ) |
| 24 |
20 23
|
sylib |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) ) |
| 25 |
24
|
simprd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑂 ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) ) |
| 26 |
25
|
simp1d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → 𝑂 ∈ 𝑠 ) |
| 27 |
26
|
ralrimiva |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∀ 𝑠 ∈ 𝐴 𝑂 ∈ 𝑠 ) |
| 28 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑠 𝑠 ∈ 𝐴 ) |
| 29 |
28
|
biimpi |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑠 𝑠 ∈ 𝐴 ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∃ 𝑠 𝑠 ∈ 𝐴 ) |
| 31 |
20
|
ex |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ( 𝑠 ∈ 𝐴 → 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ) ) |
| 32 |
31
|
eximdv |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ( ∃ 𝑠 𝑠 ∈ 𝐴 → ∃ 𝑠 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ) ) |
| 33 |
30 32
|
mpd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∃ 𝑠 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
| 34 |
|
elfvex |
⊢ ( 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑂 ∈ V ) |
| 35 |
34
|
exlimiv |
⊢ ( ∃ 𝑠 𝑠 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑂 ∈ V ) |
| 36 |
33 35
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → 𝑂 ∈ V ) |
| 37 |
|
elintg |
⊢ ( 𝑂 ∈ V → ( 𝑂 ∈ ∩ 𝐴 ↔ ∀ 𝑠 ∈ 𝐴 𝑂 ∈ 𝑠 ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ( 𝑂 ∈ ∩ 𝐴 ↔ ∀ 𝑠 ∈ 𝐴 𝑂 ∈ 𝑠 ) ) |
| 39 |
27 38
|
mpbird |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → 𝑂 ∈ ∩ 𝐴 ) |
| 40 |
|
simpll |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ) |
| 41 |
|
simpr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ 𝐴 ) |
| 42 |
40 41
|
jca |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) ) |
| 43 |
|
elinti |
⊢ ( 𝑥 ∈ ∩ 𝐴 → ( 𝑠 ∈ 𝐴 → 𝑥 ∈ 𝑠 ) ) |
| 44 |
43
|
imp |
⊢ ( ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ∈ 𝑠 ) |
| 45 |
44
|
adantll |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ∈ 𝑠 ) |
| 46 |
25
|
simp2d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) |
| 47 |
46
|
r19.21bi |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑠 ) → ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) |
| 48 |
42 45 47
|
syl2anc |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) |
| 49 |
48
|
ralrimiva |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ∀ 𝑠 ∈ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) |
| 50 |
36
|
difexd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ( 𝑂 ∖ 𝑥 ) ∈ V ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ( 𝑂 ∖ 𝑥 ) ∈ V ) |
| 52 |
|
elintg |
⊢ ( ( 𝑂 ∖ 𝑥 ) ∈ V → ( ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ↔ ∀ 𝑠 ∈ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) ) |
| 53 |
51 52
|
syl |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ( ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ↔ ∀ 𝑠 ∈ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ) ) |
| 54 |
49 53
|
mpbird |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ ∩ 𝐴 ) → ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ) |
| 55 |
54
|
ralrimiva |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∀ 𝑥 ∈ ∩ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ) |
| 56 |
|
simplll |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ) |
| 57 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ 𝐴 ) |
| 58 |
56 57
|
jca |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) ) |
| 59 |
|
simpllr |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ∈ 𝒫 ∩ 𝐴 ) |
| 60 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 ∩ 𝐴 → 𝑥 ⊆ ∩ 𝐴 ) |
| 61 |
|
intss1 |
⊢ ( 𝑠 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑠 ) |
| 62 |
60 61
|
sylan9ss |
⊢ ( ( 𝑥 ∈ 𝒫 ∩ 𝐴 ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ⊆ 𝑠 ) |
| 63 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝑠 ↔ 𝑥 ⊆ 𝑠 ) |
| 64 |
62 63
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝒫 ∩ 𝐴 ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ∈ 𝒫 𝑠 ) |
| 65 |
59 64
|
sylancom |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ∈ 𝒫 𝑠 ) |
| 66 |
58 65
|
jca |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝑠 ) ) |
| 67 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → 𝑥 ≼ ω ) |
| 68 |
25
|
simp3d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝒫 𝑠 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) |
| 69 |
68
|
r19.21bi |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑠 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝑠 ) → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑠 ) ) |
| 70 |
66 67 69
|
sylc |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) ∧ 𝑠 ∈ 𝐴 ) → ∪ 𝑥 ∈ 𝑠 ) |
| 71 |
70
|
ralrimiva |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) → ∀ 𝑠 ∈ 𝐴 ∪ 𝑥 ∈ 𝑠 ) |
| 72 |
|
uniexg |
⊢ ( 𝑥 ∈ 𝒫 ∩ 𝐴 → ∪ 𝑥 ∈ V ) |
| 73 |
72
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ V ) |
| 74 |
|
elintg |
⊢ ( ∪ 𝑥 ∈ V → ( ∪ 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑠 ∈ 𝐴 ∪ 𝑥 ∈ 𝑠 ) ) |
| 75 |
73 74
|
syl |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) → ( ∪ 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑠 ∈ 𝐴 ∪ 𝑥 ∈ 𝑠 ) ) |
| 76 |
71 75
|
mpbird |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ ∩ 𝐴 ) |
| 77 |
76
|
ex |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) ∧ 𝑥 ∈ 𝒫 ∩ 𝐴 ) → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ∩ 𝐴 ) ) |
| 78 |
77
|
ralrimiva |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∀ 𝑥 ∈ 𝒫 ∩ 𝐴 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ∩ 𝐴 ) ) |
| 79 |
39 55 78
|
3jca |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ( 𝑂 ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ ∩ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 ∩ 𝐴 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ∩ 𝐴 ) ) ) |
| 80 |
|
issiga |
⊢ ( ∩ 𝐴 ∈ V → ( ∩ 𝐴 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( ∩ 𝐴 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ ∩ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 ∩ 𝐴 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ∩ 𝐴 ) ) ) ) ) |
| 81 |
80
|
biimpar |
⊢ ( ( ∩ 𝐴 ∈ V ∧ ( ∩ 𝐴 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ ∩ 𝐴 ( 𝑂 ∖ 𝑥 ) ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 ∩ 𝐴 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ∩ 𝐴 ) ) ) ) → ∩ 𝐴 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
| 82 |
3 16 79 81
|
syl12anc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ 𝒫 ( sigAlgebra ‘ 𝑂 ) ) → ∩ 𝐴 ∈ ( sigAlgebra ‘ 𝑂 ) ) |