Metamath Proof Explorer


Definition df-sigagen

Description: Define the sigma-algebra generated by a given collection of sets as the intersection of all sigma-algebra containing that set. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion df-sigagen 𝛔=xVssigAlgebrax|xs

Detailed syntax breakdown

Step Hyp Ref Expression
0 csigagen class𝛔
1 vx setvarx
2 cvv classV
3 vs setvars
4 csiga classsigAlgebra
5 1 cv setvarx
6 5 cuni classx
7 6 4 cfv classsigAlgebrax
8 3 cv setvars
9 5 8 wss wffxs
10 9 3 7 crab classssigAlgebrax|xs
11 10 cint classssigAlgebrax|xs
12 1 2 11 cmpt classxVssigAlgebrax|xs
13 0 12 wceq wff𝛔=xVssigAlgebrax|xs