Description: Define the sigma-algebra generated by a given collection of sets as the intersection of all sigma-algebra containing that set. (Contributed by Thierry Arnoux, 27-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | df-sigagen | ⊢ sigaGen = ( 𝑥 ∈ V ↦ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑥 ) ∣ 𝑥 ⊆ 𝑠 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | csigagen | ⊢ sigaGen | |
1 | vx | ⊢ 𝑥 | |
2 | cvv | ⊢ V | |
3 | vs | ⊢ 𝑠 | |
4 | csiga | ⊢ sigAlgebra | |
5 | 1 | cv | ⊢ 𝑥 |
6 | 5 | cuni | ⊢ ∪ 𝑥 |
7 | 6 4 | cfv | ⊢ ( sigAlgebra ‘ ∪ 𝑥 ) |
8 | 3 | cv | ⊢ 𝑠 |
9 | 5 8 | wss | ⊢ 𝑥 ⊆ 𝑠 |
10 | 9 3 7 | crab | ⊢ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑥 ) ∣ 𝑥 ⊆ 𝑠 } |
11 | 10 | cint | ⊢ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑥 ) ∣ 𝑥 ⊆ 𝑠 } |
12 | 1 2 11 | cmpt | ⊢ ( 𝑥 ∈ V ↦ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑥 ) ∣ 𝑥 ⊆ 𝑠 } ) |
13 | 0 12 | wceq | ⊢ sigaGen = ( 𝑥 ∈ V ↦ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑥 ) ∣ 𝑥 ⊆ 𝑠 } ) |