Metamath Proof Explorer


Definition df-sigagen

Description: Define the sigma-algebra generated by a given collection of sets as the intersection of all sigma-algebra containing that set. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion df-sigagen sigaGen = ( 𝑥 ∈ V ↦ { 𝑠 ∈ ( sigAlgebra ‘ 𝑥 ) ∣ 𝑥𝑠 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csigagen sigaGen
1 vx 𝑥
2 cvv V
3 vs 𝑠
4 csiga sigAlgebra
5 1 cv 𝑥
6 5 cuni 𝑥
7 6 4 cfv ( sigAlgebra ‘ 𝑥 )
8 3 cv 𝑠
9 5 8 wss 𝑥𝑠
10 9 3 7 crab { 𝑠 ∈ ( sigAlgebra ‘ 𝑥 ) ∣ 𝑥𝑠 }
11 10 cint { 𝑠 ∈ ( sigAlgebra ‘ 𝑥 ) ∣ 𝑥𝑠 }
12 1 2 11 cmpt ( 𝑥 ∈ V ↦ { 𝑠 ∈ ( sigAlgebra ‘ 𝑥 ) ∣ 𝑥𝑠 } )
13 0 12 wceq sigaGen = ( 𝑥 ∈ V ↦ { 𝑠 ∈ ( sigAlgebra ‘ 𝑥 ) ∣ 𝑥𝑠 } )