Description: Define the sigma-algebra generated by a given collection of sets as the intersection of all sigma-algebra containing that set. (Contributed by Thierry Arnoux, 27-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sigagen | ⊢ sigaGen = ( 𝑥 ∈ V ↦ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑥 ) ∣ 𝑥 ⊆ 𝑠 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csigagen | ⊢ sigaGen | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cvv | ⊢ V | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | csiga | ⊢ sigAlgebra | |
| 5 | 1 | cv | ⊢ 𝑥 |
| 6 | 5 | cuni | ⊢ ∪ 𝑥 |
| 7 | 6 4 | cfv | ⊢ ( sigAlgebra ‘ ∪ 𝑥 ) |
| 8 | 3 | cv | ⊢ 𝑠 |
| 9 | 5 8 | wss | ⊢ 𝑥 ⊆ 𝑠 |
| 10 | 9 3 7 | crab | ⊢ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑥 ) ∣ 𝑥 ⊆ 𝑠 } |
| 11 | 10 | cint | ⊢ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑥 ) ∣ 𝑥 ⊆ 𝑠 } |
| 12 | 1 2 11 | cmpt | ⊢ ( 𝑥 ∈ V ↦ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑥 ) ∣ 𝑥 ⊆ 𝑠 } ) |
| 13 | 0 12 | wceq | ⊢ sigaGen = ( 𝑥 ∈ V ↦ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑥 ) ∣ 𝑥 ⊆ 𝑠 } ) |