Metamath Proof Explorer


Definition df-sigagen

Description: Define the sigma-algebra generated by a given collection of sets as the intersection of all sigma-algebra containing that set. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion df-sigagen 𝛔 = x V s sigAlgebra x | x s

Detailed syntax breakdown

Step Hyp Ref Expression
0 csigagen class 𝛔
1 vx setvar x
2 cvv class V
3 vs setvar s
4 csiga class sigAlgebra
5 1 cv setvar x
6 5 cuni class x
7 6 4 cfv class sigAlgebra x
8 3 cv setvar s
9 5 8 wss wff x s
10 9 3 7 crab class s sigAlgebra x | x s
11 10 cint class s sigAlgebra x | x s
12 1 2 11 cmpt class x V s sigAlgebra x | x s
13 0 12 wceq wff 𝛔 = x V s sigAlgebra x | x s