Metamath Proof Explorer


Theorem sigagenval

Description: Value of the generated sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion sigagenval A V 𝛔 A = s sigAlgebra A | A s

Proof

Step Hyp Ref Expression
1 df-sigagen 𝛔 = x V s sigAlgebra x | x s
2 1 a1i A V 𝛔 = x V s sigAlgebra x | x s
3 unieq x = A x = A
4 3 fveq2d x = A sigAlgebra x = sigAlgebra A
5 sseq1 x = A x s A s
6 4 5 rabeqbidv x = A s sigAlgebra x | x s = s sigAlgebra A | A s
7 6 inteqd x = A s sigAlgebra x | x s = s sigAlgebra A | A s
8 7 adantl A V x = A s sigAlgebra x | x s = s sigAlgebra A | A s
9 elex A V A V
10 uniexg A V A V
11 pwsiga A V 𝒫 A sigAlgebra A
12 10 11 syl A V 𝒫 A sigAlgebra A
13 pwuni A 𝒫 A
14 12 13 jctir A V 𝒫 A sigAlgebra A A 𝒫 A
15 sseq2 s = 𝒫 A A s A 𝒫 A
16 15 elrab 𝒫 A s sigAlgebra A | A s 𝒫 A sigAlgebra A A 𝒫 A
17 14 16 sylibr A V 𝒫 A s sigAlgebra A | A s
18 17 ne0d A V s sigAlgebra A | A s
19 intex s sigAlgebra A | A s s sigAlgebra A | A s V
20 18 19 sylib A V s sigAlgebra A | A s V
21 2 8 9 20 fvmptd A V 𝛔 A = s sigAlgebra A | A s