Metamath Proof Explorer


Theorem sigagenval

Description: Value of the generated sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion sigagenval ( 𝐴𝑉 → ( sigaGen ‘ 𝐴 ) = { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } )

Proof

Step Hyp Ref Expression
1 df-sigagen sigaGen = ( 𝑥 ∈ V ↦ { 𝑠 ∈ ( sigAlgebra ‘ 𝑥 ) ∣ 𝑥𝑠 } )
2 1 a1i ( 𝐴𝑉 → sigaGen = ( 𝑥 ∈ V ↦ { 𝑠 ∈ ( sigAlgebra ‘ 𝑥 ) ∣ 𝑥𝑠 } ) )
3 unieq ( 𝑥 = 𝐴 𝑥 = 𝐴 )
4 3 fveq2d ( 𝑥 = 𝐴 → ( sigAlgebra ‘ 𝑥 ) = ( sigAlgebra ‘ 𝐴 ) )
5 sseq1 ( 𝑥 = 𝐴 → ( 𝑥𝑠𝐴𝑠 ) )
6 4 5 rabeqbidv ( 𝑥 = 𝐴 → { 𝑠 ∈ ( sigAlgebra ‘ 𝑥 ) ∣ 𝑥𝑠 } = { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } )
7 6 inteqd ( 𝑥 = 𝐴 { 𝑠 ∈ ( sigAlgebra ‘ 𝑥 ) ∣ 𝑥𝑠 } = { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } )
8 7 adantl ( ( 𝐴𝑉𝑥 = 𝐴 ) → { 𝑠 ∈ ( sigAlgebra ‘ 𝑥 ) ∣ 𝑥𝑠 } = { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } )
9 elex ( 𝐴𝑉𝐴 ∈ V )
10 uniexg ( 𝐴𝑉 𝐴 ∈ V )
11 pwsiga ( 𝐴 ∈ V → 𝒫 𝐴 ∈ ( sigAlgebra ‘ 𝐴 ) )
12 10 11 syl ( 𝐴𝑉 → 𝒫 𝐴 ∈ ( sigAlgebra ‘ 𝐴 ) )
13 pwuni 𝐴 ⊆ 𝒫 𝐴
14 12 13 jctir ( 𝐴𝑉 → ( 𝒫 𝐴 ∈ ( sigAlgebra ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝒫 𝐴 ) )
15 sseq2 ( 𝑠 = 𝒫 𝐴 → ( 𝐴𝑠𝐴 ⊆ 𝒫 𝐴 ) )
16 15 elrab ( 𝒫 𝐴 ∈ { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ↔ ( 𝒫 𝐴 ∈ ( sigAlgebra ‘ 𝐴 ) ∧ 𝐴 ⊆ 𝒫 𝐴 ) )
17 14 16 sylibr ( 𝐴𝑉 → 𝒫 𝐴 ∈ { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } )
18 17 ne0d ( 𝐴𝑉 → { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ≠ ∅ )
19 intex ( { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ≠ ∅ ↔ { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ∈ V )
20 18 19 sylib ( 𝐴𝑉 { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } ∈ V )
21 2 8 9 20 fvmptd ( 𝐴𝑉 → ( sigaGen ‘ 𝐴 ) = { 𝑠 ∈ ( sigAlgebra ‘ 𝐴 ) ∣ 𝐴𝑠 } )