| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssidd |
⊢ ( 𝑂 ∈ 𝑉 → 𝒫 𝑂 ⊆ 𝒫 𝑂 ) |
| 2 |
|
pwidg |
⊢ ( 𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂 ) |
| 3 |
|
difss |
⊢ ( 𝑂 ∖ 𝑥 ) ⊆ 𝑂 |
| 4 |
|
elpw2g |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ↔ ( 𝑂 ∖ 𝑥 ) ⊆ 𝑂 ) ) |
| 5 |
3 4
|
mpbiri |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ) |
| 6 |
5
|
a1d |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑥 ∈ 𝒫 𝑂 → ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ) ) |
| 7 |
6
|
ralrimiv |
⊢ ( 𝑂 ∈ 𝑉 → ∀ 𝑥 ∈ 𝒫 𝑂 ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ) |
| 8 |
|
sspwuni |
⊢ ( 𝑥 ⊆ 𝒫 𝑂 ↔ ∪ 𝑥 ⊆ 𝑂 ) |
| 9 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
| 10 |
9
|
elpw |
⊢ ( ∪ 𝑥 ∈ 𝒫 𝑂 ↔ ∪ 𝑥 ⊆ 𝑂 ) |
| 11 |
8 10
|
bitr4i |
⊢ ( 𝑥 ⊆ 𝒫 𝑂 ↔ ∪ 𝑥 ∈ 𝒫 𝑂 ) |
| 12 |
11
|
biimpi |
⊢ ( 𝑥 ⊆ 𝒫 𝑂 → ∪ 𝑥 ∈ 𝒫 𝑂 ) |
| 13 |
12
|
a1d |
⊢ ( 𝑥 ⊆ 𝒫 𝑂 → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂 ) ) |
| 14 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝒫 𝑂 → 𝑥 ⊆ 𝒫 𝑂 ) |
| 15 |
14
|
imim1i |
⊢ ( ( 𝑥 ⊆ 𝒫 𝑂 → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂 ) ) → ( 𝑥 ∈ 𝒫 𝒫 𝑂 → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂 ) ) ) |
| 16 |
13 15
|
mp1i |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑥 ∈ 𝒫 𝒫 𝑂 → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂 ) ) ) |
| 17 |
16
|
ralrimiv |
⊢ ( 𝑂 ∈ 𝑉 → ∀ 𝑥 ∈ 𝒫 𝒫 𝑂 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂 ) ) |
| 18 |
2 7 17
|
3jca |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑂 ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝑂 ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝒫 𝑂 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂 ) ) ) |
| 19 |
|
pwexg |
⊢ ( 𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ V ) |
| 20 |
|
issiga |
⊢ ( 𝒫 𝑂 ∈ V → ( 𝒫 𝑂 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝑂 ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝒫 𝑂 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂 ) ) ) ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝒫 𝑂 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝑂 ( 𝑂 ∖ 𝑥 ) ∈ 𝒫 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 𝒫 𝑂 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂 ) ) ) ) ) |
| 22 |
1 18 21
|
mpbir2and |
⊢ ( 𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ ( sigAlgebra ‘ 𝑂 ) ) |