| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝑂 | 
						
							| 2 |  | pwidg | ⊢ ( 𝑂  ∈  𝑉  →  𝑂  ∈  𝒫  𝑂 ) | 
						
							| 3 |  | prssi | ⊢ ( ( ∅  ∈  𝒫  𝑂  ∧  𝑂  ∈  𝒫  𝑂 )  →  { ∅ ,  𝑂 }  ⊆  𝒫  𝑂 ) | 
						
							| 4 | 1 2 3 | sylancr | ⊢ ( 𝑂  ∈  𝑉  →  { ∅ ,  𝑂 }  ⊆  𝒫  𝑂 ) | 
						
							| 5 |  | prid2g | ⊢ ( 𝑂  ∈  𝑉  →  𝑂  ∈  { ∅ ,  𝑂 } ) | 
						
							| 6 |  | dif0 | ⊢ ( 𝑂  ∖  ∅ )  =  𝑂 | 
						
							| 7 | 6 5 | eqeltrid | ⊢ ( 𝑂  ∈  𝑉  →  ( 𝑂  ∖  ∅ )  ∈  { ∅ ,  𝑂 } ) | 
						
							| 8 |  | difid | ⊢ ( 𝑂  ∖  𝑂 )  =  ∅ | 
						
							| 9 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 10 | 9 | prid1 | ⊢ ∅  ∈  { ∅ ,  𝑂 } | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑂  ∈  𝑉  →  ∅  ∈  { ∅ ,  𝑂 } ) | 
						
							| 12 | 8 11 | eqeltrid | ⊢ ( 𝑂  ∈  𝑉  →  ( 𝑂  ∖  𝑂 )  ∈  { ∅ ,  𝑂 } ) | 
						
							| 13 |  | difeq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝑂  ∖  𝑥 )  =  ( 𝑂  ∖  ∅ ) ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑂  ∖  𝑥 )  ∈  { ∅ ,  𝑂 }  ↔  ( 𝑂  ∖  ∅ )  ∈  { ∅ ,  𝑂 } ) ) | 
						
							| 15 |  | difeq2 | ⊢ ( 𝑥  =  𝑂  →  ( 𝑂  ∖  𝑥 )  =  ( 𝑂  ∖  𝑂 ) ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( 𝑥  =  𝑂  →  ( ( 𝑂  ∖  𝑥 )  ∈  { ∅ ,  𝑂 }  ↔  ( 𝑂  ∖  𝑂 )  ∈  { ∅ ,  𝑂 } ) ) | 
						
							| 17 | 14 16 | ralprg | ⊢ ( ( ∅  ∈  V  ∧  𝑂  ∈  𝑉 )  →  ( ∀ 𝑥  ∈  { ∅ ,  𝑂 } ( 𝑂  ∖  𝑥 )  ∈  { ∅ ,  𝑂 }  ↔  ( ( 𝑂  ∖  ∅ )  ∈  { ∅ ,  𝑂 }  ∧  ( 𝑂  ∖  𝑂 )  ∈  { ∅ ,  𝑂 } ) ) ) | 
						
							| 18 | 9 17 | mpan | ⊢ ( 𝑂  ∈  𝑉  →  ( ∀ 𝑥  ∈  { ∅ ,  𝑂 } ( 𝑂  ∖  𝑥 )  ∈  { ∅ ,  𝑂 }  ↔  ( ( 𝑂  ∖  ∅ )  ∈  { ∅ ,  𝑂 }  ∧  ( 𝑂  ∖  𝑂 )  ∈  { ∅ ,  𝑂 } ) ) ) | 
						
							| 19 | 7 12 18 | mpbir2and | ⊢ ( 𝑂  ∈  𝑉  →  ∀ 𝑥  ∈  { ∅ ,  𝑂 } ( 𝑂  ∖  𝑥 )  ∈  { ∅ ,  𝑂 } ) | 
						
							| 20 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 21 | 20 10 | eqeltri | ⊢ ∪  ∅  ∈  { ∅ ,  𝑂 } | 
						
							| 22 | 9 | unisn | ⊢ ∪  { ∅ }  =  ∅ | 
						
							| 23 | 22 10 | eqeltri | ⊢ ∪  { ∅ }  ∈  { ∅ ,  𝑂 } | 
						
							| 24 | 21 23 | pm3.2i | ⊢ ( ∪  ∅  ∈  { ∅ ,  𝑂 }  ∧  ∪  { ∅ }  ∈  { ∅ ,  𝑂 } ) | 
						
							| 25 |  | snex | ⊢ { ∅ }  ∈  V | 
						
							| 26 | 9 25 | pm3.2i | ⊢ ( ∅  ∈  V  ∧  { ∅ }  ∈  V ) | 
						
							| 27 |  | unieq | ⊢ ( 𝑥  =  ∅  →  ∪  𝑥  =  ∪  ∅ ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( 𝑥  =  ∅  →  ( ∪  𝑥  ∈  { ∅ ,  𝑂 }  ↔  ∪  ∅  ∈  { ∅ ,  𝑂 } ) ) | 
						
							| 29 |  | unieq | ⊢ ( 𝑥  =  { ∅ }  →  ∪  𝑥  =  ∪  { ∅ } ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑥  =  { ∅ }  →  ( ∪  𝑥  ∈  { ∅ ,  𝑂 }  ↔  ∪  { ∅ }  ∈  { ∅ ,  𝑂 } ) ) | 
						
							| 31 | 28 30 | ralprg | ⊢ ( ( ∅  ∈  V  ∧  { ∅ }  ∈  V )  →  ( ∀ 𝑥  ∈  { ∅ ,  { ∅ } } ∪  𝑥  ∈  { ∅ ,  𝑂 }  ↔  ( ∪  ∅  ∈  { ∅ ,  𝑂 }  ∧  ∪  { ∅ }  ∈  { ∅ ,  𝑂 } ) ) ) | 
						
							| 32 | 26 31 | mp1i | ⊢ ( 𝑂  ∈  𝑉  →  ( ∀ 𝑥  ∈  { ∅ ,  { ∅ } } ∪  𝑥  ∈  { ∅ ,  𝑂 }  ↔  ( ∪  ∅  ∈  { ∅ ,  𝑂 }  ∧  ∪  { ∅ }  ∈  { ∅ ,  𝑂 } ) ) ) | 
						
							| 33 | 24 32 | mpbiri | ⊢ ( 𝑂  ∈  𝑉  →  ∀ 𝑥  ∈  { ∅ ,  { ∅ } } ∪  𝑥  ∈  { ∅ ,  𝑂 } ) | 
						
							| 34 |  | unisng | ⊢ ( 𝑂  ∈  𝑉  →  ∪  { 𝑂 }  =  𝑂 ) | 
						
							| 35 | 34 5 | eqeltrd | ⊢ ( 𝑂  ∈  𝑉  →  ∪  { 𝑂 }  ∈  { ∅ ,  𝑂 } ) | 
						
							| 36 |  | uniprg | ⊢ ( ( ∅  ∈  V  ∧  𝑂  ∈  𝑉 )  →  ∪  { ∅ ,  𝑂 }  =  ( ∅  ∪  𝑂 ) ) | 
						
							| 37 | 9 36 | mpan | ⊢ ( 𝑂  ∈  𝑉  →  ∪  { ∅ ,  𝑂 }  =  ( ∅  ∪  𝑂 ) ) | 
						
							| 38 |  | uncom | ⊢ ( ∅  ∪  𝑂 )  =  ( 𝑂  ∪  ∅ ) | 
						
							| 39 |  | un0 | ⊢ ( 𝑂  ∪  ∅ )  =  𝑂 | 
						
							| 40 | 38 39 | eqtri | ⊢ ( ∅  ∪  𝑂 )  =  𝑂 | 
						
							| 41 | 37 40 | eqtrdi | ⊢ ( 𝑂  ∈  𝑉  →  ∪  { ∅ ,  𝑂 }  =  𝑂 ) | 
						
							| 42 | 41 5 | eqeltrd | ⊢ ( 𝑂  ∈  𝑉  →  ∪  { ∅ ,  𝑂 }  ∈  { ∅ ,  𝑂 } ) | 
						
							| 43 |  | snex | ⊢ { 𝑂 }  ∈  V | 
						
							| 44 |  | prex | ⊢ { ∅ ,  𝑂 }  ∈  V | 
						
							| 45 | 43 44 | pm3.2i | ⊢ ( { 𝑂 }  ∈  V  ∧  { ∅ ,  𝑂 }  ∈  V ) | 
						
							| 46 |  | unieq | ⊢ ( 𝑥  =  { 𝑂 }  →  ∪  𝑥  =  ∪  { 𝑂 } ) | 
						
							| 47 | 46 | eleq1d | ⊢ ( 𝑥  =  { 𝑂 }  →  ( ∪  𝑥  ∈  { ∅ ,  𝑂 }  ↔  ∪  { 𝑂 }  ∈  { ∅ ,  𝑂 } ) ) | 
						
							| 48 |  | unieq | ⊢ ( 𝑥  =  { ∅ ,  𝑂 }  →  ∪  𝑥  =  ∪  { ∅ ,  𝑂 } ) | 
						
							| 49 | 48 | eleq1d | ⊢ ( 𝑥  =  { ∅ ,  𝑂 }  →  ( ∪  𝑥  ∈  { ∅ ,  𝑂 }  ↔  ∪  { ∅ ,  𝑂 }  ∈  { ∅ ,  𝑂 } ) ) | 
						
							| 50 | 47 49 | ralprg | ⊢ ( ( { 𝑂 }  ∈  V  ∧  { ∅ ,  𝑂 }  ∈  V )  →  ( ∀ 𝑥  ∈  { { 𝑂 } ,  { ∅ ,  𝑂 } } ∪  𝑥  ∈  { ∅ ,  𝑂 }  ↔  ( ∪  { 𝑂 }  ∈  { ∅ ,  𝑂 }  ∧  ∪  { ∅ ,  𝑂 }  ∈  { ∅ ,  𝑂 } ) ) ) | 
						
							| 51 | 45 50 | mp1i | ⊢ ( 𝑂  ∈  𝑉  →  ( ∀ 𝑥  ∈  { { 𝑂 } ,  { ∅ ,  𝑂 } } ∪  𝑥  ∈  { ∅ ,  𝑂 }  ↔  ( ∪  { 𝑂 }  ∈  { ∅ ,  𝑂 }  ∧  ∪  { ∅ ,  𝑂 }  ∈  { ∅ ,  𝑂 } ) ) ) | 
						
							| 52 | 35 42 51 | mpbir2and | ⊢ ( 𝑂  ∈  𝑉  →  ∀ 𝑥  ∈  { { 𝑂 } ,  { ∅ ,  𝑂 } } ∪  𝑥  ∈  { ∅ ,  𝑂 } ) | 
						
							| 53 |  | ralun | ⊢ ( ( ∀ 𝑥  ∈  { ∅ ,  { ∅ } } ∪  𝑥  ∈  { ∅ ,  𝑂 }  ∧  ∀ 𝑥  ∈  { { 𝑂 } ,  { ∅ ,  𝑂 } } ∪  𝑥  ∈  { ∅ ,  𝑂 } )  →  ∀ 𝑥  ∈  ( { ∅ ,  { ∅ } }  ∪  { { 𝑂 } ,  { ∅ ,  𝑂 } } ) ∪  𝑥  ∈  { ∅ ,  𝑂 } ) | 
						
							| 54 | 33 52 53 | syl2anc | ⊢ ( 𝑂  ∈  𝑉  →  ∀ 𝑥  ∈  ( { ∅ ,  { ∅ } }  ∪  { { 𝑂 } ,  { ∅ ,  𝑂 } } ) ∪  𝑥  ∈  { ∅ ,  𝑂 } ) | 
						
							| 55 |  | pwpr | ⊢ 𝒫  { ∅ ,  𝑂 }  =  ( { ∅ ,  { ∅ } }  ∪  { { 𝑂 } ,  { ∅ ,  𝑂 } } ) | 
						
							| 56 | 55 | raleqi | ⊢ ( ∀ 𝑥  ∈  𝒫  { ∅ ,  𝑂 } ∪  𝑥  ∈  { ∅ ,  𝑂 }  ↔  ∀ 𝑥  ∈  ( { ∅ ,  { ∅ } }  ∪  { { 𝑂 } ,  { ∅ ,  𝑂 } } ) ∪  𝑥  ∈  { ∅ ,  𝑂 } ) | 
						
							| 57 | 54 56 | sylibr | ⊢ ( 𝑂  ∈  𝑉  →  ∀ 𝑥  ∈  𝒫  { ∅ ,  𝑂 } ∪  𝑥  ∈  { ∅ ,  𝑂 } ) | 
						
							| 58 |  | ax-1 | ⊢ ( ∪  𝑥  ∈  { ∅ ,  𝑂 }  →  ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  { ∅ ,  𝑂 } ) ) | 
						
							| 59 | 58 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝒫  { ∅ ,  𝑂 } ∪  𝑥  ∈  { ∅ ,  𝑂 }  →  ∀ 𝑥  ∈  𝒫  { ∅ ,  𝑂 } ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  { ∅ ,  𝑂 } ) ) | 
						
							| 60 | 57 59 | syl | ⊢ ( 𝑂  ∈  𝑉  →  ∀ 𝑥  ∈  𝒫  { ∅ ,  𝑂 } ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  { ∅ ,  𝑂 } ) ) | 
						
							| 61 | 5 19 60 | 3jca | ⊢ ( 𝑂  ∈  𝑉  →  ( 𝑂  ∈  { ∅ ,  𝑂 }  ∧  ∀ 𝑥  ∈  { ∅ ,  𝑂 } ( 𝑂  ∖  𝑥 )  ∈  { ∅ ,  𝑂 }  ∧  ∀ 𝑥  ∈  𝒫  { ∅ ,  𝑂 } ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  { ∅ ,  𝑂 } ) ) ) | 
						
							| 62 |  | issiga | ⊢ ( { ∅ ,  𝑂 }  ∈  V  →  ( { ∅ ,  𝑂 }  ∈  ( sigAlgebra ‘ 𝑂 )  ↔  ( { ∅ ,  𝑂 }  ⊆  𝒫  𝑂  ∧  ( 𝑂  ∈  { ∅ ,  𝑂 }  ∧  ∀ 𝑥  ∈  { ∅ ,  𝑂 } ( 𝑂  ∖  𝑥 )  ∈  { ∅ ,  𝑂 }  ∧  ∀ 𝑥  ∈  𝒫  { ∅ ,  𝑂 } ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  { ∅ ,  𝑂 } ) ) ) ) ) | 
						
							| 63 | 44 62 | ax-mp | ⊢ ( { ∅ ,  𝑂 }  ∈  ( sigAlgebra ‘ 𝑂 )  ↔  ( { ∅ ,  𝑂 }  ⊆  𝒫  𝑂  ∧  ( 𝑂  ∈  { ∅ ,  𝑂 }  ∧  ∀ 𝑥  ∈  { ∅ ,  𝑂 } ( 𝑂  ∖  𝑥 )  ∈  { ∅ ,  𝑂 }  ∧  ∀ 𝑥  ∈  𝒫  { ∅ ,  𝑂 } ( 𝑥  ≼  ω  →  ∪  𝑥  ∈  { ∅ ,  𝑂 } ) ) ) ) | 
						
							| 64 | 4 61 63 | sylanbrc | ⊢ ( 𝑂  ∈  𝑉  →  { ∅ ,  𝑂 }  ∈  ( sigAlgebra ‘ 𝑂 ) ) |