Metamath Proof Explorer


Theorem prsiga

Description: The smallest possible sigma-algebra containing O . (Contributed by Thierry Arnoux, 13-Sep-2016)

Ref Expression
Assertion prsiga ( 𝑂𝑉 → { ∅ , 𝑂 } ∈ ( sigAlgebra ‘ 𝑂 ) )

Proof

Step Hyp Ref Expression
1 0elpw ∅ ∈ 𝒫 𝑂
2 pwidg ( 𝑂𝑉𝑂 ∈ 𝒫 𝑂 )
3 prssi ( ( ∅ ∈ 𝒫 𝑂𝑂 ∈ 𝒫 𝑂 ) → { ∅ , 𝑂 } ⊆ 𝒫 𝑂 )
4 1 2 3 sylancr ( 𝑂𝑉 → { ∅ , 𝑂 } ⊆ 𝒫 𝑂 )
5 prid2g ( 𝑂𝑉𝑂 ∈ { ∅ , 𝑂 } )
6 dif0 ( 𝑂 ∖ ∅ ) = 𝑂
7 6 5 eqeltrid ( 𝑂𝑉 → ( 𝑂 ∖ ∅ ) ∈ { ∅ , 𝑂 } )
8 difid ( 𝑂𝑂 ) = ∅
9 0ex ∅ ∈ V
10 9 prid1 ∅ ∈ { ∅ , 𝑂 }
11 10 a1i ( 𝑂𝑉 → ∅ ∈ { ∅ , 𝑂 } )
12 8 11 eqeltrid ( 𝑂𝑉 → ( 𝑂𝑂 ) ∈ { ∅ , 𝑂 } )
13 difeq2 ( 𝑥 = ∅ → ( 𝑂𝑥 ) = ( 𝑂 ∖ ∅ ) )
14 13 eleq1d ( 𝑥 = ∅ → ( ( 𝑂𝑥 ) ∈ { ∅ , 𝑂 } ↔ ( 𝑂 ∖ ∅ ) ∈ { ∅ , 𝑂 } ) )
15 difeq2 ( 𝑥 = 𝑂 → ( 𝑂𝑥 ) = ( 𝑂𝑂 ) )
16 15 eleq1d ( 𝑥 = 𝑂 → ( ( 𝑂𝑥 ) ∈ { ∅ , 𝑂 } ↔ ( 𝑂𝑂 ) ∈ { ∅ , 𝑂 } ) )
17 14 16 ralprg ( ( ∅ ∈ V ∧ 𝑂𝑉 ) → ( ∀ 𝑥 ∈ { ∅ , 𝑂 } ( 𝑂𝑥 ) ∈ { ∅ , 𝑂 } ↔ ( ( 𝑂 ∖ ∅ ) ∈ { ∅ , 𝑂 } ∧ ( 𝑂𝑂 ) ∈ { ∅ , 𝑂 } ) ) )
18 9 17 mpan ( 𝑂𝑉 → ( ∀ 𝑥 ∈ { ∅ , 𝑂 } ( 𝑂𝑥 ) ∈ { ∅ , 𝑂 } ↔ ( ( 𝑂 ∖ ∅ ) ∈ { ∅ , 𝑂 } ∧ ( 𝑂𝑂 ) ∈ { ∅ , 𝑂 } ) ) )
19 7 12 18 mpbir2and ( 𝑂𝑉 → ∀ 𝑥 ∈ { ∅ , 𝑂 } ( 𝑂𝑥 ) ∈ { ∅ , 𝑂 } )
20 uni0 ∅ = ∅
21 20 10 eqeltri ∅ ∈ { ∅ , 𝑂 }
22 9 unisn { ∅ } = ∅
23 22 10 eqeltri { ∅ } ∈ { ∅ , 𝑂 }
24 21 23 pm3.2i ( ∅ ∈ { ∅ , 𝑂 } ∧ { ∅ } ∈ { ∅ , 𝑂 } )
25 snex { ∅ } ∈ V
26 9 25 pm3.2i ( ∅ ∈ V ∧ { ∅ } ∈ V )
27 unieq ( 𝑥 = ∅ → 𝑥 = ∅ )
28 27 eleq1d ( 𝑥 = ∅ → ( 𝑥 ∈ { ∅ , 𝑂 } ↔ ∅ ∈ { ∅ , 𝑂 } ) )
29 unieq ( 𝑥 = { ∅ } → 𝑥 = { ∅ } )
30 29 eleq1d ( 𝑥 = { ∅ } → ( 𝑥 ∈ { ∅ , 𝑂 } ↔ { ∅ } ∈ { ∅ , 𝑂 } ) )
31 28 30 ralprg ( ( ∅ ∈ V ∧ { ∅ } ∈ V ) → ( ∀ 𝑥 ∈ { ∅ , { ∅ } } 𝑥 ∈ { ∅ , 𝑂 } ↔ ( ∅ ∈ { ∅ , 𝑂 } ∧ { ∅ } ∈ { ∅ , 𝑂 } ) ) )
32 26 31 mp1i ( 𝑂𝑉 → ( ∀ 𝑥 ∈ { ∅ , { ∅ } } 𝑥 ∈ { ∅ , 𝑂 } ↔ ( ∅ ∈ { ∅ , 𝑂 } ∧ { ∅ } ∈ { ∅ , 𝑂 } ) ) )
33 24 32 mpbiri ( 𝑂𝑉 → ∀ 𝑥 ∈ { ∅ , { ∅ } } 𝑥 ∈ { ∅ , 𝑂 } )
34 unisng ( 𝑂𝑉 { 𝑂 } = 𝑂 )
35 34 5 eqeltrd ( 𝑂𝑉 { 𝑂 } ∈ { ∅ , 𝑂 } )
36 uniprg ( ( ∅ ∈ V ∧ 𝑂𝑉 ) → { ∅ , 𝑂 } = ( ∅ ∪ 𝑂 ) )
37 9 36 mpan ( 𝑂𝑉 { ∅ , 𝑂 } = ( ∅ ∪ 𝑂 ) )
38 uncom ( ∅ ∪ 𝑂 ) = ( 𝑂 ∪ ∅ )
39 un0 ( 𝑂 ∪ ∅ ) = 𝑂
40 38 39 eqtri ( ∅ ∪ 𝑂 ) = 𝑂
41 37 40 eqtrdi ( 𝑂𝑉 { ∅ , 𝑂 } = 𝑂 )
42 41 5 eqeltrd ( 𝑂𝑉 { ∅ , 𝑂 } ∈ { ∅ , 𝑂 } )
43 snex { 𝑂 } ∈ V
44 prex { ∅ , 𝑂 } ∈ V
45 43 44 pm3.2i ( { 𝑂 } ∈ V ∧ { ∅ , 𝑂 } ∈ V )
46 unieq ( 𝑥 = { 𝑂 } → 𝑥 = { 𝑂 } )
47 46 eleq1d ( 𝑥 = { 𝑂 } → ( 𝑥 ∈ { ∅ , 𝑂 } ↔ { 𝑂 } ∈ { ∅ , 𝑂 } ) )
48 unieq ( 𝑥 = { ∅ , 𝑂 } → 𝑥 = { ∅ , 𝑂 } )
49 48 eleq1d ( 𝑥 = { ∅ , 𝑂 } → ( 𝑥 ∈ { ∅ , 𝑂 } ↔ { ∅ , 𝑂 } ∈ { ∅ , 𝑂 } ) )
50 47 49 ralprg ( ( { 𝑂 } ∈ V ∧ { ∅ , 𝑂 } ∈ V ) → ( ∀ 𝑥 ∈ { { 𝑂 } , { ∅ , 𝑂 } } 𝑥 ∈ { ∅ , 𝑂 } ↔ ( { 𝑂 } ∈ { ∅ , 𝑂 } ∧ { ∅ , 𝑂 } ∈ { ∅ , 𝑂 } ) ) )
51 45 50 mp1i ( 𝑂𝑉 → ( ∀ 𝑥 ∈ { { 𝑂 } , { ∅ , 𝑂 } } 𝑥 ∈ { ∅ , 𝑂 } ↔ ( { 𝑂 } ∈ { ∅ , 𝑂 } ∧ { ∅ , 𝑂 } ∈ { ∅ , 𝑂 } ) ) )
52 35 42 51 mpbir2and ( 𝑂𝑉 → ∀ 𝑥 ∈ { { 𝑂 } , { ∅ , 𝑂 } } 𝑥 ∈ { ∅ , 𝑂 } )
53 ralun ( ( ∀ 𝑥 ∈ { ∅ , { ∅ } } 𝑥 ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ { { 𝑂 } , { ∅ , 𝑂 } } 𝑥 ∈ { ∅ , 𝑂 } ) → ∀ 𝑥 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑂 } , { ∅ , 𝑂 } } ) 𝑥 ∈ { ∅ , 𝑂 } )
54 33 52 53 syl2anc ( 𝑂𝑉 → ∀ 𝑥 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑂 } , { ∅ , 𝑂 } } ) 𝑥 ∈ { ∅ , 𝑂 } )
55 pwpr 𝒫 { ∅ , 𝑂 } = ( { ∅ , { ∅ } } ∪ { { 𝑂 } , { ∅ , 𝑂 } } )
56 55 raleqi ( ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } 𝑥 ∈ { ∅ , 𝑂 } ↔ ∀ 𝑥 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑂 } , { ∅ , 𝑂 } } ) 𝑥 ∈ { ∅ , 𝑂 } )
57 54 56 sylibr ( 𝑂𝑉 → ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } 𝑥 ∈ { ∅ , 𝑂 } )
58 ax-1 ( 𝑥 ∈ { ∅ , 𝑂 } → ( 𝑥 ≼ ω → 𝑥 ∈ { ∅ , 𝑂 } ) )
59 58 ralimi ( ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } 𝑥 ∈ { ∅ , 𝑂 } → ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } ( 𝑥 ≼ ω → 𝑥 ∈ { ∅ , 𝑂 } ) )
60 57 59 syl ( 𝑂𝑉 → ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } ( 𝑥 ≼ ω → 𝑥 ∈ { ∅ , 𝑂 } ) )
61 5 19 60 3jca ( 𝑂𝑉 → ( 𝑂 ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ { ∅ , 𝑂 } ( 𝑂𝑥 ) ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } ( 𝑥 ≼ ω → 𝑥 ∈ { ∅ , 𝑂 } ) ) )
62 issiga ( { ∅ , 𝑂 } ∈ V → ( { ∅ , 𝑂 } ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( { ∅ , 𝑂 } ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ { ∅ , 𝑂 } ( 𝑂𝑥 ) ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } ( 𝑥 ≼ ω → 𝑥 ∈ { ∅ , 𝑂 } ) ) ) ) )
63 44 62 ax-mp ( { ∅ , 𝑂 } ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( { ∅ , 𝑂 } ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ { ∅ , 𝑂 } ( 𝑂𝑥 ) ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } ( 𝑥 ≼ ω → 𝑥 ∈ { ∅ , 𝑂 } ) ) ) )
64 4 61 63 sylanbrc ( 𝑂𝑉 → { ∅ , 𝑂 } ∈ ( sigAlgebra ‘ 𝑂 ) )