| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑂 |
| 2 |
|
pwidg |
⊢ ( 𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂 ) |
| 3 |
|
prssi |
⊢ ( ( ∅ ∈ 𝒫 𝑂 ∧ 𝑂 ∈ 𝒫 𝑂 ) → { ∅ , 𝑂 } ⊆ 𝒫 𝑂 ) |
| 4 |
1 2 3
|
sylancr |
⊢ ( 𝑂 ∈ 𝑉 → { ∅ , 𝑂 } ⊆ 𝒫 𝑂 ) |
| 5 |
|
prid2g |
⊢ ( 𝑂 ∈ 𝑉 → 𝑂 ∈ { ∅ , 𝑂 } ) |
| 6 |
|
dif0 |
⊢ ( 𝑂 ∖ ∅ ) = 𝑂 |
| 7 |
6 5
|
eqeltrid |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑂 ∖ ∅ ) ∈ { ∅ , 𝑂 } ) |
| 8 |
|
difid |
⊢ ( 𝑂 ∖ 𝑂 ) = ∅ |
| 9 |
|
0ex |
⊢ ∅ ∈ V |
| 10 |
9
|
prid1 |
⊢ ∅ ∈ { ∅ , 𝑂 } |
| 11 |
10
|
a1i |
⊢ ( 𝑂 ∈ 𝑉 → ∅ ∈ { ∅ , 𝑂 } ) |
| 12 |
8 11
|
eqeltrid |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑂 ∖ 𝑂 ) ∈ { ∅ , 𝑂 } ) |
| 13 |
|
difeq2 |
⊢ ( 𝑥 = ∅ → ( 𝑂 ∖ 𝑥 ) = ( 𝑂 ∖ ∅ ) ) |
| 14 |
13
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑂 ∖ 𝑥 ) ∈ { ∅ , 𝑂 } ↔ ( 𝑂 ∖ ∅ ) ∈ { ∅ , 𝑂 } ) ) |
| 15 |
|
difeq2 |
⊢ ( 𝑥 = 𝑂 → ( 𝑂 ∖ 𝑥 ) = ( 𝑂 ∖ 𝑂 ) ) |
| 16 |
15
|
eleq1d |
⊢ ( 𝑥 = 𝑂 → ( ( 𝑂 ∖ 𝑥 ) ∈ { ∅ , 𝑂 } ↔ ( 𝑂 ∖ 𝑂 ) ∈ { ∅ , 𝑂 } ) ) |
| 17 |
14 16
|
ralprg |
⊢ ( ( ∅ ∈ V ∧ 𝑂 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ { ∅ , 𝑂 } ( 𝑂 ∖ 𝑥 ) ∈ { ∅ , 𝑂 } ↔ ( ( 𝑂 ∖ ∅ ) ∈ { ∅ , 𝑂 } ∧ ( 𝑂 ∖ 𝑂 ) ∈ { ∅ , 𝑂 } ) ) ) |
| 18 |
9 17
|
mpan |
⊢ ( 𝑂 ∈ 𝑉 → ( ∀ 𝑥 ∈ { ∅ , 𝑂 } ( 𝑂 ∖ 𝑥 ) ∈ { ∅ , 𝑂 } ↔ ( ( 𝑂 ∖ ∅ ) ∈ { ∅ , 𝑂 } ∧ ( 𝑂 ∖ 𝑂 ) ∈ { ∅ , 𝑂 } ) ) ) |
| 19 |
7 12 18
|
mpbir2and |
⊢ ( 𝑂 ∈ 𝑉 → ∀ 𝑥 ∈ { ∅ , 𝑂 } ( 𝑂 ∖ 𝑥 ) ∈ { ∅ , 𝑂 } ) |
| 20 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 21 |
20 10
|
eqeltri |
⊢ ∪ ∅ ∈ { ∅ , 𝑂 } |
| 22 |
9
|
unisn |
⊢ ∪ { ∅ } = ∅ |
| 23 |
22 10
|
eqeltri |
⊢ ∪ { ∅ } ∈ { ∅ , 𝑂 } |
| 24 |
21 23
|
pm3.2i |
⊢ ( ∪ ∅ ∈ { ∅ , 𝑂 } ∧ ∪ { ∅ } ∈ { ∅ , 𝑂 } ) |
| 25 |
|
snex |
⊢ { ∅ } ∈ V |
| 26 |
9 25
|
pm3.2i |
⊢ ( ∅ ∈ V ∧ { ∅ } ∈ V ) |
| 27 |
|
unieq |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∪ ∅ ) |
| 28 |
27
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ∪ 𝑥 ∈ { ∅ , 𝑂 } ↔ ∪ ∅ ∈ { ∅ , 𝑂 } ) ) |
| 29 |
|
unieq |
⊢ ( 𝑥 = { ∅ } → ∪ 𝑥 = ∪ { ∅ } ) |
| 30 |
29
|
eleq1d |
⊢ ( 𝑥 = { ∅ } → ( ∪ 𝑥 ∈ { ∅ , 𝑂 } ↔ ∪ { ∅ } ∈ { ∅ , 𝑂 } ) ) |
| 31 |
28 30
|
ralprg |
⊢ ( ( ∅ ∈ V ∧ { ∅ } ∈ V ) → ( ∀ 𝑥 ∈ { ∅ , { ∅ } } ∪ 𝑥 ∈ { ∅ , 𝑂 } ↔ ( ∪ ∅ ∈ { ∅ , 𝑂 } ∧ ∪ { ∅ } ∈ { ∅ , 𝑂 } ) ) ) |
| 32 |
26 31
|
mp1i |
⊢ ( 𝑂 ∈ 𝑉 → ( ∀ 𝑥 ∈ { ∅ , { ∅ } } ∪ 𝑥 ∈ { ∅ , 𝑂 } ↔ ( ∪ ∅ ∈ { ∅ , 𝑂 } ∧ ∪ { ∅ } ∈ { ∅ , 𝑂 } ) ) ) |
| 33 |
24 32
|
mpbiri |
⊢ ( 𝑂 ∈ 𝑉 → ∀ 𝑥 ∈ { ∅ , { ∅ } } ∪ 𝑥 ∈ { ∅ , 𝑂 } ) |
| 34 |
|
unisng |
⊢ ( 𝑂 ∈ 𝑉 → ∪ { 𝑂 } = 𝑂 ) |
| 35 |
34 5
|
eqeltrd |
⊢ ( 𝑂 ∈ 𝑉 → ∪ { 𝑂 } ∈ { ∅ , 𝑂 } ) |
| 36 |
|
uniprg |
⊢ ( ( ∅ ∈ V ∧ 𝑂 ∈ 𝑉 ) → ∪ { ∅ , 𝑂 } = ( ∅ ∪ 𝑂 ) ) |
| 37 |
9 36
|
mpan |
⊢ ( 𝑂 ∈ 𝑉 → ∪ { ∅ , 𝑂 } = ( ∅ ∪ 𝑂 ) ) |
| 38 |
|
uncom |
⊢ ( ∅ ∪ 𝑂 ) = ( 𝑂 ∪ ∅ ) |
| 39 |
|
un0 |
⊢ ( 𝑂 ∪ ∅ ) = 𝑂 |
| 40 |
38 39
|
eqtri |
⊢ ( ∅ ∪ 𝑂 ) = 𝑂 |
| 41 |
37 40
|
eqtrdi |
⊢ ( 𝑂 ∈ 𝑉 → ∪ { ∅ , 𝑂 } = 𝑂 ) |
| 42 |
41 5
|
eqeltrd |
⊢ ( 𝑂 ∈ 𝑉 → ∪ { ∅ , 𝑂 } ∈ { ∅ , 𝑂 } ) |
| 43 |
|
snex |
⊢ { 𝑂 } ∈ V |
| 44 |
|
prex |
⊢ { ∅ , 𝑂 } ∈ V |
| 45 |
43 44
|
pm3.2i |
⊢ ( { 𝑂 } ∈ V ∧ { ∅ , 𝑂 } ∈ V ) |
| 46 |
|
unieq |
⊢ ( 𝑥 = { 𝑂 } → ∪ 𝑥 = ∪ { 𝑂 } ) |
| 47 |
46
|
eleq1d |
⊢ ( 𝑥 = { 𝑂 } → ( ∪ 𝑥 ∈ { ∅ , 𝑂 } ↔ ∪ { 𝑂 } ∈ { ∅ , 𝑂 } ) ) |
| 48 |
|
unieq |
⊢ ( 𝑥 = { ∅ , 𝑂 } → ∪ 𝑥 = ∪ { ∅ , 𝑂 } ) |
| 49 |
48
|
eleq1d |
⊢ ( 𝑥 = { ∅ , 𝑂 } → ( ∪ 𝑥 ∈ { ∅ , 𝑂 } ↔ ∪ { ∅ , 𝑂 } ∈ { ∅ , 𝑂 } ) ) |
| 50 |
47 49
|
ralprg |
⊢ ( ( { 𝑂 } ∈ V ∧ { ∅ , 𝑂 } ∈ V ) → ( ∀ 𝑥 ∈ { { 𝑂 } , { ∅ , 𝑂 } } ∪ 𝑥 ∈ { ∅ , 𝑂 } ↔ ( ∪ { 𝑂 } ∈ { ∅ , 𝑂 } ∧ ∪ { ∅ , 𝑂 } ∈ { ∅ , 𝑂 } ) ) ) |
| 51 |
45 50
|
mp1i |
⊢ ( 𝑂 ∈ 𝑉 → ( ∀ 𝑥 ∈ { { 𝑂 } , { ∅ , 𝑂 } } ∪ 𝑥 ∈ { ∅ , 𝑂 } ↔ ( ∪ { 𝑂 } ∈ { ∅ , 𝑂 } ∧ ∪ { ∅ , 𝑂 } ∈ { ∅ , 𝑂 } ) ) ) |
| 52 |
35 42 51
|
mpbir2and |
⊢ ( 𝑂 ∈ 𝑉 → ∀ 𝑥 ∈ { { 𝑂 } , { ∅ , 𝑂 } } ∪ 𝑥 ∈ { ∅ , 𝑂 } ) |
| 53 |
|
ralun |
⊢ ( ( ∀ 𝑥 ∈ { ∅ , { ∅ } } ∪ 𝑥 ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ { { 𝑂 } , { ∅ , 𝑂 } } ∪ 𝑥 ∈ { ∅ , 𝑂 } ) → ∀ 𝑥 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑂 } , { ∅ , 𝑂 } } ) ∪ 𝑥 ∈ { ∅ , 𝑂 } ) |
| 54 |
33 52 53
|
syl2anc |
⊢ ( 𝑂 ∈ 𝑉 → ∀ 𝑥 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑂 } , { ∅ , 𝑂 } } ) ∪ 𝑥 ∈ { ∅ , 𝑂 } ) |
| 55 |
|
pwpr |
⊢ 𝒫 { ∅ , 𝑂 } = ( { ∅ , { ∅ } } ∪ { { 𝑂 } , { ∅ , 𝑂 } } ) |
| 56 |
55
|
raleqi |
⊢ ( ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } ∪ 𝑥 ∈ { ∅ , 𝑂 } ↔ ∀ 𝑥 ∈ ( { ∅ , { ∅ } } ∪ { { 𝑂 } , { ∅ , 𝑂 } } ) ∪ 𝑥 ∈ { ∅ , 𝑂 } ) |
| 57 |
54 56
|
sylibr |
⊢ ( 𝑂 ∈ 𝑉 → ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } ∪ 𝑥 ∈ { ∅ , 𝑂 } ) |
| 58 |
|
ax-1 |
⊢ ( ∪ 𝑥 ∈ { ∅ , 𝑂 } → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ { ∅ , 𝑂 } ) ) |
| 59 |
58
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } ∪ 𝑥 ∈ { ∅ , 𝑂 } → ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } ( 𝑥 ≼ ω → ∪ 𝑥 ∈ { ∅ , 𝑂 } ) ) |
| 60 |
57 59
|
syl |
⊢ ( 𝑂 ∈ 𝑉 → ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } ( 𝑥 ≼ ω → ∪ 𝑥 ∈ { ∅ , 𝑂 } ) ) |
| 61 |
5 19 60
|
3jca |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑂 ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ { ∅ , 𝑂 } ( 𝑂 ∖ 𝑥 ) ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } ( 𝑥 ≼ ω → ∪ 𝑥 ∈ { ∅ , 𝑂 } ) ) ) |
| 62 |
|
issiga |
⊢ ( { ∅ , 𝑂 } ∈ V → ( { ∅ , 𝑂 } ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( { ∅ , 𝑂 } ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ { ∅ , 𝑂 } ( 𝑂 ∖ 𝑥 ) ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } ( 𝑥 ≼ ω → ∪ 𝑥 ∈ { ∅ , 𝑂 } ) ) ) ) ) |
| 63 |
44 62
|
ax-mp |
⊢ ( { ∅ , 𝑂 } ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( { ∅ , 𝑂 } ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ { ∅ , 𝑂 } ( 𝑂 ∖ 𝑥 ) ∈ { ∅ , 𝑂 } ∧ ∀ 𝑥 ∈ 𝒫 { ∅ , 𝑂 } ( 𝑥 ≼ ω → ∪ 𝑥 ∈ { ∅ , 𝑂 } ) ) ) ) |
| 64 |
4 61 63
|
sylanbrc |
⊢ ( 𝑂 ∈ 𝑉 → { ∅ , 𝑂 } ∈ ( sigAlgebra ‘ 𝑂 ) ) |