Metamath Proof Explorer


Theorem sigaclci

Description: A sigma-algebra is closed under countable intersections. Deduction version. (Contributed by Thierry Arnoux, 19-Sep-2016)

Ref Expression
Assertion sigaclci ( ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) ∧ ( 𝐴 ≼ ω ∧ 𝐴 ≠ ∅ ) ) → 𝐴𝑆 )

Proof

Step Hyp Ref Expression
1 isrnsigau ( 𝑆 ran sigAlgebra → ( 𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
2 1 simprd ( 𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) )
3 2 simp2d ( 𝑆 ran sigAlgebra → ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 )
4 3 adantr ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 )
5 elpwi ( 𝐴 ∈ 𝒫 𝑆𝐴𝑆 )
6 ssrexv ( 𝐴𝑆 → ( ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) → ∃ 𝑧𝑆 𝑦 = ( 𝑆𝑧 ) ) )
7 5 6 syl ( 𝐴 ∈ 𝒫 𝑆 → ( ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) → ∃ 𝑧𝑆 𝑦 = ( 𝑆𝑧 ) ) )
8 7 ss2abdv ( 𝐴 ∈ 𝒫 𝑆 → { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ⊆ { 𝑦 ∣ ∃ 𝑧𝑆 𝑦 = ( 𝑆𝑧 ) } )
9 isrnsigau ( 𝑆 ran sigAlgebra → ( 𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀ 𝑧𝑆 ( 𝑆𝑧 ) ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ≼ ω → 𝑧𝑆 ) ) ) )
10 9 simprd ( 𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀ 𝑧𝑆 ( 𝑆𝑧 ) ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ≼ ω → 𝑧𝑆 ) ) )
11 10 simp2d ( 𝑆 ran sigAlgebra → ∀ 𝑧𝑆 ( 𝑆𝑧 ) ∈ 𝑆 )
12 uniiunlem ( ∀ 𝑧𝑆 ( 𝑆𝑧 ) ∈ 𝑆 → ( ∀ 𝑧𝑆 ( 𝑆𝑧 ) ∈ 𝑆 ↔ { 𝑦 ∣ ∃ 𝑧𝑆 𝑦 = ( 𝑆𝑧 ) } ⊆ 𝑆 ) )
13 11 12 syl ( 𝑆 ran sigAlgebra → ( ∀ 𝑧𝑆 ( 𝑆𝑧 ) ∈ 𝑆 ↔ { 𝑦 ∣ ∃ 𝑧𝑆 𝑦 = ( 𝑆𝑧 ) } ⊆ 𝑆 ) )
14 11 13 mpbid ( 𝑆 ran sigAlgebra → { 𝑦 ∣ ∃ 𝑧𝑆 𝑦 = ( 𝑆𝑧 ) } ⊆ 𝑆 )
15 8 14 sylan9ssr ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ⊆ 𝑆 )
16 abrexexg ( 𝐴 ∈ 𝒫 𝑆 → { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ V )
17 elpwg ( { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ V → ( { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ 𝒫 𝑆 ↔ { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ⊆ 𝑆 ) )
18 16 17 syl ( 𝐴 ∈ 𝒫 𝑆 → ( { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ 𝒫 𝑆 ↔ { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ⊆ 𝑆 ) )
19 18 adantl ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ 𝒫 𝑆 ↔ { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ⊆ 𝑆 ) )
20 15 19 mpbird ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ 𝒫 𝑆 )
21 2 simp3d ( 𝑆 ran sigAlgebra → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) )
22 21 adantr ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) )
23 20 22 jca ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ 𝒫 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) )
24 abrexdom2jm ( 𝐴 ∈ 𝒫 𝑆 → { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ≼ 𝐴 )
25 domtr ( ( { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ≼ 𝐴𝐴 ≼ ω ) → { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ≼ ω )
26 24 25 sylan ( ( 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω ) → { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ≼ ω )
27 26 ex ( 𝐴 ∈ 𝒫 𝑆 → ( 𝐴 ≼ ω → { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ≼ ω ) )
28 27 adantl ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( 𝐴 ≼ ω → { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ≼ ω ) )
29 breq1 ( 𝑥 = { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } → ( 𝑥 ≼ ω ↔ { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ≼ ω ) )
30 unieq ( 𝑥 = { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } → 𝑥 = { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } )
31 30 eleq1d ( 𝑥 = { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } → ( 𝑥𝑆 { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ 𝑆 ) )
32 29 31 imbi12d ( 𝑥 = { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } → ( ( 𝑥 ≼ ω → 𝑥𝑆 ) ↔ ( { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ≼ ω → { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ 𝑆 ) ) )
33 32 rspcva ( ( { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ 𝒫 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) → ( { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ≼ ω → { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ 𝑆 ) )
34 23 28 33 sylsyld ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( 𝐴 ≼ ω → { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ 𝑆 ) )
35 5 adantl ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → 𝐴𝑆 )
36 11 adantr ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ∀ 𝑧𝑆 ( 𝑆𝑧 ) ∈ 𝑆 )
37 ssralv ( 𝐴𝑆 → ( ∀ 𝑧𝑆 ( 𝑆𝑧 ) ∈ 𝑆 → ∀ 𝑧𝐴 ( 𝑆𝑧 ) ∈ 𝑆 ) )
38 35 36 37 sylc ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ∀ 𝑧𝐴 ( 𝑆𝑧 ) ∈ 𝑆 )
39 dfiun2g ( ∀ 𝑧𝐴 ( 𝑆𝑧 ) ∈ 𝑆 𝑧𝐴 ( 𝑆𝑧 ) = { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } )
40 eleq1 ( 𝑧𝐴 ( 𝑆𝑧 ) = { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } → ( 𝑧𝐴 ( 𝑆𝑧 ) ∈ 𝑆 { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ 𝑆 ) )
41 38 39 40 3syl ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( 𝑧𝐴 ( 𝑆𝑧 ) ∈ 𝑆 { 𝑦 ∣ ∃ 𝑧𝐴 𝑦 = ( 𝑆𝑧 ) } ∈ 𝑆 ) )
42 34 41 sylibrd ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( 𝐴 ≼ ω → 𝑧𝐴 ( 𝑆𝑧 ) ∈ 𝑆 ) )
43 difeq2 ( 𝑥 = 𝑧𝐴 ( 𝑆𝑧 ) → ( 𝑆𝑥 ) = ( 𝑆 𝑧𝐴 ( 𝑆𝑧 ) ) )
44 43 eleq1d ( 𝑥 = 𝑧𝐴 ( 𝑆𝑧 ) → ( ( 𝑆𝑥 ) ∈ 𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧 ) ) ∈ 𝑆 ) )
45 44 rspccv ( ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 → ( 𝑧𝐴 ( 𝑆𝑧 ) ∈ 𝑆 → ( 𝑆 𝑧𝐴 ( 𝑆𝑧 ) ) ∈ 𝑆 ) )
46 4 42 45 sylsyld ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( 𝐴 ≼ ω → ( 𝑆 𝑧𝐴 ( 𝑆𝑧 ) ) ∈ 𝑆 ) )
47 46 adantrd ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( ( 𝐴 ≼ ω ∧ 𝐴 ≠ ∅ ) → ( 𝑆 𝑧𝐴 ( 𝑆𝑧 ) ) ∈ 𝑆 ) )
48 47 imp ( ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) ∧ ( 𝐴 ≼ ω ∧ 𝐴 ≠ ∅ ) ) → ( 𝑆 𝑧𝐴 ( 𝑆𝑧 ) ) ∈ 𝑆 )
49 simpr ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → 𝐴 ∈ 𝒫 𝑆 )
50 pwuni 𝑆 ⊆ 𝒫 𝑆
51 5 50 sstrdi ( 𝐴 ∈ 𝒫 𝑆𝐴 ⊆ 𝒫 𝑆 )
52 iundifdifd ( 𝐴 ⊆ 𝒫 𝑆 → ( 𝐴 ≠ ∅ → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧 ) ) ) )
53 49 51 52 3syl ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( 𝐴 ≠ ∅ → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧 ) ) ) )
54 53 adantld ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( ( 𝐴 ≼ ω ∧ 𝐴 ≠ ∅ ) → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧 ) ) ) )
55 eleq1 ( 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧 ) ) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧 ) ) ∈ 𝑆 ) )
56 54 55 syl6 ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( ( 𝐴 ≼ ω ∧ 𝐴 ≠ ∅ ) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧 ) ) ∈ 𝑆 ) ) )
57 56 imp ( ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) ∧ ( 𝐴 ≼ ω ∧ 𝐴 ≠ ∅ ) ) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧 ) ) ∈ 𝑆 ) )
58 48 57 mpbird ( ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) ∧ ( 𝐴 ≼ ω ∧ 𝐴 ≠ ∅ ) ) → 𝐴𝑆 )