Step |
Hyp |
Ref |
Expression |
1 |
|
isrnsigau |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
2 |
1
|
simprd |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) |
3 |
2
|
simp2d |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ) |
4 |
3
|
adantr |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ) |
5 |
|
elpwi |
⊢ ( 𝐴 ∈ 𝒫 𝑆 → 𝐴 ⊆ 𝑆 ) |
6 |
|
ssrexv |
⊢ ( 𝐴 ⊆ 𝑆 → ( ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) → ∃ 𝑧 ∈ 𝑆 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ 𝒫 𝑆 → ( ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) → ∃ 𝑧 ∈ 𝑆 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) ) ) |
8 |
7
|
ss2abdv |
⊢ ( 𝐴 ∈ 𝒫 𝑆 → { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ⊆ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑆 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ) |
9 |
|
isrnsigau |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ≼ ω → ∪ 𝑧 ∈ 𝑆 ) ) ) ) |
10 |
9
|
simprd |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝒫 𝑆 ( 𝑧 ≼ ω → ∪ 𝑧 ∈ 𝑆 ) ) ) |
11 |
10
|
simp2d |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∀ 𝑧 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 ) |
12 |
|
uniiunlem |
⊢ ( ∀ 𝑧 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 → ( ∀ 𝑧 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 ↔ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑆 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ⊆ 𝑆 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ∀ 𝑧 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 ↔ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑆 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ⊆ 𝑆 ) ) |
14 |
11 13
|
mpbid |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → { 𝑦 ∣ ∃ 𝑧 ∈ 𝑆 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ⊆ 𝑆 ) |
15 |
8 14
|
sylan9ssr |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ⊆ 𝑆 ) |
16 |
|
abrexexg |
⊢ ( 𝐴 ∈ 𝒫 𝑆 → { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ V ) |
17 |
|
elpwg |
⊢ ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ V → ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ 𝒫 𝑆 ↔ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ⊆ 𝑆 ) ) |
18 |
16 17
|
syl |
⊢ ( 𝐴 ∈ 𝒫 𝑆 → ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ 𝒫 𝑆 ↔ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ⊆ 𝑆 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ 𝒫 𝑆 ↔ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ⊆ 𝑆 ) ) |
20 |
15 19
|
mpbird |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ 𝒫 𝑆 ) |
21 |
2
|
simp3d |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) |
23 |
20 22
|
jca |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ 𝒫 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) |
24 |
|
abrexdom2jm |
⊢ ( 𝐴 ∈ 𝒫 𝑆 → { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ≼ 𝐴 ) |
25 |
|
domtr |
⊢ ( ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ≼ 𝐴 ∧ 𝐴 ≼ ω ) → { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ≼ ω ) |
26 |
24 25
|
sylan |
⊢ ( ( 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω ) → { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ≼ ω ) |
27 |
26
|
ex |
⊢ ( 𝐴 ∈ 𝒫 𝑆 → ( 𝐴 ≼ ω → { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ≼ ω ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( 𝐴 ≼ ω → { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ≼ ω ) ) |
29 |
|
breq1 |
⊢ ( 𝑥 = { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } → ( 𝑥 ≼ ω ↔ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ≼ ω ) ) |
30 |
|
unieq |
⊢ ( 𝑥 = { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } → ∪ 𝑥 = ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ) |
31 |
30
|
eleq1d |
⊢ ( 𝑥 = { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } → ( ∪ 𝑥 ∈ 𝑆 ↔ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ 𝑆 ) ) |
32 |
29 31
|
imbi12d |
⊢ ( 𝑥 = { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } → ( ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ↔ ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ≼ ω → ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ 𝑆 ) ) ) |
33 |
32
|
rspcva |
⊢ ( ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ 𝒫 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) → ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ≼ ω → ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ 𝑆 ) ) |
34 |
23 28 33
|
sylsyld |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( 𝐴 ≼ ω → ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ 𝑆 ) ) |
35 |
5
|
adantl |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → 𝐴 ⊆ 𝑆 ) |
36 |
11
|
adantr |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ∀ 𝑧 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 ) |
37 |
|
ssralv |
⊢ ( 𝐴 ⊆ 𝑆 → ( ∀ 𝑧 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 → ∀ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 ) ) |
38 |
35 36 37
|
sylc |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ∀ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 ) |
39 |
|
dfiun2g |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 → ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) = ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ) |
40 |
|
eleq1 |
⊢ ( ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) = ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } → ( ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 ↔ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ 𝑆 ) ) |
41 |
38 39 40
|
3syl |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 ↔ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ( ∪ 𝑆 ∖ 𝑧 ) } ∈ 𝑆 ) ) |
42 |
34 41
|
sylibrd |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( 𝐴 ≼ ω → ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 ) ) |
43 |
|
difeq2 |
⊢ ( 𝑥 = ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) → ( ∪ 𝑆 ∖ 𝑥 ) = ( ∪ 𝑆 ∖ ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ) ) |
44 |
43
|
eleq1d |
⊢ ( 𝑥 = ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) → ( ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ↔ ( ∪ 𝑆 ∖ ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ) ∈ 𝑆 ) ) |
45 |
44
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 → ( ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ∈ 𝑆 → ( ∪ 𝑆 ∖ ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ) ∈ 𝑆 ) ) |
46 |
4 42 45
|
sylsyld |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( 𝐴 ≼ ω → ( ∪ 𝑆 ∖ ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ) ∈ 𝑆 ) ) |
47 |
46
|
adantrd |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( ( 𝐴 ≼ ω ∧ 𝐴 ≠ ∅ ) → ( ∪ 𝑆 ∖ ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ) ∈ 𝑆 ) ) |
48 |
47
|
imp |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) ∧ ( 𝐴 ≼ ω ∧ 𝐴 ≠ ∅ ) ) → ( ∪ 𝑆 ∖ ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ) ∈ 𝑆 ) |
49 |
|
simpr |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → 𝐴 ∈ 𝒫 𝑆 ) |
50 |
|
pwuni |
⊢ 𝑆 ⊆ 𝒫 ∪ 𝑆 |
51 |
5 50
|
sstrdi |
⊢ ( 𝐴 ∈ 𝒫 𝑆 → 𝐴 ⊆ 𝒫 ∪ 𝑆 ) |
52 |
|
iundifdifd |
⊢ ( 𝐴 ⊆ 𝒫 ∪ 𝑆 → ( 𝐴 ≠ ∅ → ∩ 𝐴 = ( ∪ 𝑆 ∖ ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ) ) ) |
53 |
49 51 52
|
3syl |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( 𝐴 ≠ ∅ → ∩ 𝐴 = ( ∪ 𝑆 ∖ ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ) ) ) |
54 |
53
|
adantld |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( ( 𝐴 ≼ ω ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 = ( ∪ 𝑆 ∖ ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ) ) ) |
55 |
|
eleq1 |
⊢ ( ∩ 𝐴 = ( ∪ 𝑆 ∖ ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ) → ( ∩ 𝐴 ∈ 𝑆 ↔ ( ∪ 𝑆 ∖ ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ) ∈ 𝑆 ) ) |
56 |
54 55
|
syl6 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) → ( ( 𝐴 ≼ ω ∧ 𝐴 ≠ ∅ ) → ( ∩ 𝐴 ∈ 𝑆 ↔ ( ∪ 𝑆 ∖ ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ) ∈ 𝑆 ) ) ) |
57 |
56
|
imp |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) ∧ ( 𝐴 ≼ ω ∧ 𝐴 ≠ ∅ ) ) → ( ∩ 𝐴 ∈ 𝑆 ↔ ( ∪ 𝑆 ∖ ∪ 𝑧 ∈ 𝐴 ( ∪ 𝑆 ∖ 𝑧 ) ) ∈ 𝑆 ) ) |
58 |
48 57
|
mpbird |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ) ∧ ( 𝐴 ≼ ω ∧ 𝐴 ≠ ∅ ) ) → ∩ 𝐴 ∈ 𝑆 ) |