Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) |
2 |
|
elssuni |
⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ⊆ ∪ 𝑆 ) |
3 |
|
difin2 |
⊢ ( 𝐴 ⊆ ∪ 𝑆 → ( 𝐴 ∖ 𝐵 ) = ( ( ∪ 𝑆 ∖ 𝐵 ) ∩ 𝐴 ) ) |
4 |
1 2 3
|
3syl |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∖ 𝐵 ) = ( ( ∪ 𝑆 ∖ 𝐵 ) ∩ 𝐴 ) ) |
5 |
|
isrnsigau |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
6 |
5
|
simprd |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) |
7 |
6
|
simp2d |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ) |
8 |
|
difeq2 |
⊢ ( 𝑥 = 𝐵 → ( ∪ 𝑆 ∖ 𝑥 ) = ( ∪ 𝑆 ∖ 𝐵 ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ↔ ( ∪ 𝑆 ∖ 𝐵 ) ∈ 𝑆 ) ) |
10 |
9
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐵 ) ∈ 𝑆 ) |
11 |
7 10
|
sylan |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐵 ) ∈ 𝑆 ) |
12 |
11
|
3adant2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐵 ) ∈ 𝑆 ) |
13 |
|
intprg |
⊢ ( ( ( ∪ 𝑆 ∖ 𝐵 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ∩ { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } = ( ( ∪ 𝑆 ∖ 𝐵 ) ∩ 𝐴 ) ) |
14 |
12 1 13
|
syl2anc |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ∩ { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } = ( ( ∪ 𝑆 ∖ 𝐵 ) ∩ 𝐴 ) ) |
15 |
4 14
|
eqtr4d |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∖ 𝐵 ) = ∩ { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ) |
16 |
|
simp1 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
17 |
|
prssi |
⊢ ( ( ( ∪ 𝑆 ∖ 𝐵 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ⊆ 𝑆 ) |
18 |
12 1 17
|
syl2anc |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ⊆ 𝑆 ) |
19 |
|
prex |
⊢ { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ∈ V |
20 |
19
|
elpw |
⊢ ( { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ∈ 𝒫 𝑆 ↔ { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ⊆ 𝑆 ) |
21 |
18 20
|
sylibr |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ∈ 𝒫 𝑆 ) |
22 |
|
prct |
⊢ ( ( ( ∪ 𝑆 ∖ 𝐵 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ≼ ω ) |
23 |
12 1 22
|
syl2anc |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ≼ ω ) |
24 |
|
prnzg |
⊢ ( ( ∪ 𝑆 ∖ 𝐵 ) ∈ 𝑆 → { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ≠ ∅ ) |
25 |
12 24
|
syl |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ≠ ∅ ) |
26 |
|
sigaclci |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ∈ 𝒫 𝑆 ) ∧ ( { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ≼ ω ∧ { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ≠ ∅ ) ) → ∩ { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ∈ 𝑆 ) |
27 |
16 21 23 25 26
|
syl22anc |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ∩ { ( ∪ 𝑆 ∖ 𝐵 ) , 𝐴 } ∈ 𝑆 ) |
28 |
15 27
|
eqeltrd |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) |