Metamath Proof Explorer


Theorem unelsiga

Description: A sigma-algebra is closed under pairwise unions. (Contributed by Thierry Arnoux, 13-Dec-2016)

Ref Expression
Assertion unelsiga ( ( 𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆 ) → ( 𝐴𝐵 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 uniprg ( ( 𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
2 1 3adant1 ( ( 𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
3 isrnsigau ( 𝑆 ran sigAlgebra → ( 𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
4 3 simprd ( 𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) )
5 4 simp3d ( 𝑆 ran sigAlgebra → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) )
6 5 3ad2ant1 ( ( 𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆 ) → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) )
7 prct ( ( 𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } ≼ ω )
8 7 3adant1 ( ( 𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } ≼ ω )
9 prelpwi ( ( 𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑆 )
10 breq1 ( 𝑥 = { 𝐴 , 𝐵 } → ( 𝑥 ≼ ω ↔ { 𝐴 , 𝐵 } ≼ ω ) )
11 unieq ( 𝑥 = { 𝐴 , 𝐵 } → 𝑥 = { 𝐴 , 𝐵 } )
12 11 eleq1d ( 𝑥 = { 𝐴 , 𝐵 } → ( 𝑥𝑆 { 𝐴 , 𝐵 } ∈ 𝑆 ) )
13 10 12 imbi12d ( 𝑥 = { 𝐴 , 𝐵 } → ( ( 𝑥 ≼ ω → 𝑥𝑆 ) ↔ ( { 𝐴 , 𝐵 } ≼ ω → { 𝐴 , 𝐵 } ∈ 𝑆 ) ) )
14 13 rspcv ( { 𝐴 , 𝐵 } ∈ 𝒫 𝑆 → ( ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) → ( { 𝐴 , 𝐵 } ≼ ω → { 𝐴 , 𝐵 } ∈ 𝑆 ) ) )
15 9 14 syl ( ( 𝐴𝑆𝐵𝑆 ) → ( ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) → ( { 𝐴 , 𝐵 } ≼ ω → { 𝐴 , 𝐵 } ∈ 𝑆 ) ) )
16 15 3adant1 ( ( 𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆 ) → ( ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) → ( { 𝐴 , 𝐵 } ≼ ω → { 𝐴 , 𝐵 } ∈ 𝑆 ) ) )
17 6 8 16 mp2d ( ( 𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } ∈ 𝑆 )
18 2 17 eqeltrrd ( ( 𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆 ) → ( 𝐴𝐵 ) ∈ 𝑆 )