Step |
Hyp |
Ref |
Expression |
1 |
|
uniprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
2 |
1
|
3adant1 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
3 |
|
isrnsigau |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
4 |
3
|
simprd |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) |
5 |
4
|
simp3d |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) |
7 |
|
prct |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → { 𝐴 , 𝐵 } ≼ ω ) |
8 |
7
|
3adant1 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → { 𝐴 , 𝐵 } ≼ ω ) |
9 |
|
prelpwi |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑆 ) |
10 |
|
breq1 |
⊢ ( 𝑥 = { 𝐴 , 𝐵 } → ( 𝑥 ≼ ω ↔ { 𝐴 , 𝐵 } ≼ ω ) ) |
11 |
|
unieq |
⊢ ( 𝑥 = { 𝐴 , 𝐵 } → ∪ 𝑥 = ∪ { 𝐴 , 𝐵 } ) |
12 |
11
|
eleq1d |
⊢ ( 𝑥 = { 𝐴 , 𝐵 } → ( ∪ 𝑥 ∈ 𝑆 ↔ ∪ { 𝐴 , 𝐵 } ∈ 𝑆 ) ) |
13 |
10 12
|
imbi12d |
⊢ ( 𝑥 = { 𝐴 , 𝐵 } → ( ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ↔ ( { 𝐴 , 𝐵 } ≼ ω → ∪ { 𝐴 , 𝐵 } ∈ 𝑆 ) ) ) |
14 |
13
|
rspcv |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝒫 𝑆 → ( ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) → ( { 𝐴 , 𝐵 } ≼ ω → ∪ { 𝐴 , 𝐵 } ∈ 𝑆 ) ) ) |
15 |
9 14
|
syl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) → ( { 𝐴 , 𝐵 } ≼ ω → ∪ { 𝐴 , 𝐵 } ∈ 𝑆 ) ) ) |
16 |
15
|
3adant1 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) → ( { 𝐴 , 𝐵 } ≼ ω → ∪ { 𝐴 , 𝐵 } ∈ 𝑆 ) ) ) |
17 |
6 8 16
|
mp2d |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ∪ { 𝐴 , 𝐵 } ∈ 𝑆 ) |
18 |
2 17
|
eqeltrrd |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝑆 ) |