Metamath Proof Explorer


Theorem isrnsigau

Description: The property of being a sigma-algebra, universe is the union set. (Contributed by Thierry Arnoux, 11-Nov-2016)

Ref Expression
Assertion isrnsigau ( 𝑆 ran sigAlgebra → ( 𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )

Proof

Step Hyp Ref Expression
1 sgon ( 𝑆 ran sigAlgebra → 𝑆 ∈ ( sigAlgebra ‘ 𝑆 ) )
2 elex ( 𝑆 ran sigAlgebra → 𝑆 ∈ V )
3 issiga ( 𝑆 ∈ V → ( 𝑆 ∈ ( sigAlgebra ‘ 𝑆 ) ↔ ( 𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )
4 2 3 syl ( 𝑆 ran sigAlgebra → ( 𝑆 ∈ ( sigAlgebra ‘ 𝑆 ) ↔ ( 𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )
5 1 4 mpbid ( 𝑆 ran sigAlgebra → ( 𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )