Step |
Hyp |
Ref |
Expression |
1 |
|
sgon |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ ( sigAlgebra ‘ ∪ 𝑆 ) ) |
2 |
|
elex |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ V ) |
3 |
|
issiga |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ ( sigAlgebra ‘ ∪ 𝑆 ) ↔ ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |
4 |
2 3
|
syl |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑆 ∈ ( sigAlgebra ‘ ∪ 𝑆 ) ↔ ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |
5 |
1 4
|
mpbid |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |