Description: A sigma-algebra is closed under pairwise intersections. (Contributed by Thierry Arnoux, 13-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | inelsiga | ⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin4 | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) | |
2 | difelsiga | ⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) | |
3 | difelsiga | ⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) ∈ 𝑆 ) | |
4 | 2 3 | syld3an3 | ⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) ∈ 𝑆 ) |
5 | 1 4 | eqeltrid | ⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ) |