Step |
Hyp |
Ref |
Expression |
1 |
|
inex1g |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑆 ∩ 𝒫 𝐴 ) ∈ V ) |
2 |
1
|
adantr |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) → ( 𝑆 ∩ 𝒫 𝐴 ) ∈ V ) |
3 |
|
inss2 |
⊢ ( 𝑆 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 |
4 |
3
|
a1i |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) → ( 𝑆 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 ) |
5 |
|
simpr |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) |
6 |
|
pwidg |
⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ 𝒫 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) → 𝐴 ∈ 𝒫 𝐴 ) |
8 |
5 7
|
elind |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) → 𝐴 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) |
9 |
|
simpll |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
10 |
|
simplr |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) → 𝐴 ∈ 𝑆 ) |
11 |
|
inss1 |
⊢ ( 𝑆 ∩ 𝒫 𝐴 ) ⊆ 𝑆 |
12 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) → 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) |
13 |
11 12
|
sselid |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) → 𝑥 ∈ 𝑆 ) |
14 |
|
difelsiga |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 ) |
15 |
9 10 13 14
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 ) |
16 |
|
difss |
⊢ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 |
17 |
|
elpwg |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 ) ) |
18 |
16 17
|
mpbiri |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ 𝑆 → ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) |
19 |
15 18
|
syl |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) |
20 |
15 19
|
elind |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) → ( 𝐴 ∖ 𝑥 ) ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) |
21 |
20
|
ralrimiva |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) → ∀ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ( 𝐴 ∖ 𝑥 ) ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) |
22 |
|
simplll |
⊢ ( ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ) ∧ 𝑥 ≼ ω ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
23 |
|
simplr |
⊢ ( ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ) ∧ 𝑥 ≼ ω ) → 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ) |
24 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) → 𝑥 ⊆ ( 𝑆 ∩ 𝒫 𝐴 ) ) |
25 |
|
sstr |
⊢ ( ( 𝑥 ⊆ ( 𝑆 ∩ 𝒫 𝐴 ) ∧ ( 𝑆 ∩ 𝒫 𝐴 ) ⊆ 𝑆 ) → 𝑥 ⊆ 𝑆 ) |
26 |
11 25
|
mpan2 |
⊢ ( 𝑥 ⊆ ( 𝑆 ∩ 𝒫 𝐴 ) → 𝑥 ⊆ 𝑆 ) |
27 |
23 24 26
|
3syl |
⊢ ( ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ) ∧ 𝑥 ≼ ω ) → 𝑥 ⊆ 𝑆 ) |
28 |
|
elpwg |
⊢ ( 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) → ( 𝑥 ∈ 𝒫 𝑆 ↔ 𝑥 ⊆ 𝑆 ) ) |
29 |
28
|
biimpar |
⊢ ( ( 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ∧ 𝑥 ⊆ 𝑆 ) → 𝑥 ∈ 𝒫 𝑆 ) |
30 |
23 27 29
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ) ∧ 𝑥 ≼ ω ) → 𝑥 ∈ 𝒫 𝑆 ) |
31 |
|
simpr |
⊢ ( ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ) ∧ 𝑥 ≼ ω ) → 𝑥 ≼ ω ) |
32 |
|
sigaclcu |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆 ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝑆 ) |
33 |
22 30 31 32
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ) ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝑆 ) |
34 |
|
sstr |
⊢ ( ( 𝑥 ⊆ ( 𝑆 ∩ 𝒫 𝐴 ) ∧ ( 𝑆 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 ) → 𝑥 ⊆ 𝒫 𝐴 ) |
35 |
3 34
|
mpan2 |
⊢ ( 𝑥 ⊆ ( 𝑆 ∩ 𝒫 𝐴 ) → 𝑥 ⊆ 𝒫 𝐴 ) |
36 |
23 24 35
|
3syl |
⊢ ( ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ) ∧ 𝑥 ≼ ω ) → 𝑥 ⊆ 𝒫 𝐴 ) |
37 |
|
sspwuni |
⊢ ( 𝑥 ⊆ 𝒫 𝐴 ↔ ∪ 𝑥 ⊆ 𝐴 ) |
38 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
39 |
38
|
elpw |
⊢ ( ∪ 𝑥 ∈ 𝒫 𝐴 ↔ ∪ 𝑥 ⊆ 𝐴 ) |
40 |
37 39
|
bitr4i |
⊢ ( 𝑥 ⊆ 𝒫 𝐴 ↔ ∪ 𝑥 ∈ 𝒫 𝐴 ) |
41 |
36 40
|
sylib |
⊢ ( ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ) ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝒫 𝐴 ) |
42 |
33 41
|
elind |
⊢ ( ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ) ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) |
43 |
42
|
ex |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ) → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) ) |
44 |
43
|
ralrimiva |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) ) |
45 |
8 21 44
|
3jca |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) → ( 𝐴 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ( 𝐴 ∖ 𝑥 ) ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) ) ) |
46 |
|
issiga |
⊢ ( ( 𝑆 ∩ 𝒫 𝐴 ) ∈ V → ( ( 𝑆 ∩ 𝒫 𝐴 ) ∈ ( sigAlgebra ‘ 𝐴 ) ↔ ( ( 𝑆 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 ∧ ( 𝐴 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ( 𝐴 ∖ 𝑥 ) ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) ) ) ) ) |
47 |
46
|
biimpar |
⊢ ( ( ( 𝑆 ∩ 𝒫 𝐴 ) ∈ V ∧ ( ( 𝑆 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 ∧ ( 𝐴 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ( 𝐴 ∖ 𝑥 ) ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ 𝒫 ( 𝑆 ∩ 𝒫 𝐴 ) ( 𝑥 ≼ ω → ∪ 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ) ) ) ) → ( 𝑆 ∩ 𝒫 𝐴 ) ∈ ( sigAlgebra ‘ 𝐴 ) ) |
48 |
2 4 45 47
|
syl12anc |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) → ( 𝑆 ∩ 𝒫 𝐴 ) ∈ ( sigAlgebra ‘ 𝐴 ) ) |