Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω ) → 𝐴 ∈ 𝒫 𝑆 ) |
2 |
|
isrnsiga |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra ↔ ( 𝑆 ∈ V ∧ ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |
3 |
2
|
simprbi |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
4 |
|
simpr3 |
⊢ ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) |
5 |
4
|
exlimiv |
⊢ ( ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) |
6 |
3 5
|
syl |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω ) → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) |
8 |
|
simp3 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω ) → 𝐴 ≼ ω ) |
9 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≼ ω ↔ 𝐴 ≼ ω ) ) |
10 |
|
unieq |
⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) |
11 |
10
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ∪ 𝑥 ∈ 𝑆 ↔ ∪ 𝐴 ∈ 𝑆 ) ) |
12 |
9 11
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ↔ ( 𝐴 ≼ ω → ∪ 𝐴 ∈ 𝑆 ) ) ) |
13 |
12
|
rspcv |
⊢ ( 𝐴 ∈ 𝒫 𝑆 → ( ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) → ( 𝐴 ≼ ω → ∪ 𝐴 ∈ 𝑆 ) ) ) |
14 |
1 7 8 13
|
syl3c |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω ) → ∪ 𝐴 ∈ 𝑆 ) |