Metamath Proof Explorer


Theorem sigaclcu

Description: A sigma-algebra is closed under countable union. (Contributed by Thierry Arnoux, 26-Dec-2016)

Ref Expression
Assertion sigaclcu ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω ) → 𝐴𝑆 )

Proof

Step Hyp Ref Expression
1 simp2 ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω ) → 𝐴 ∈ 𝒫 𝑆 )
2 isrnsiga ( 𝑆 ran sigAlgebra ↔ ( 𝑆 ∈ V ∧ ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )
3 2 simprbi ( 𝑆 ran sigAlgebra → ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
4 simpr3 ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) )
5 4 exlimiv ( ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) )
6 3 5 syl ( 𝑆 ran sigAlgebra → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) )
7 6 3ad2ant1 ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω ) → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) )
8 simp3 ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω ) → 𝐴 ≼ ω )
9 breq1 ( 𝑥 = 𝐴 → ( 𝑥 ≼ ω ↔ 𝐴 ≼ ω ) )
10 unieq ( 𝑥 = 𝐴 𝑥 = 𝐴 )
11 10 eleq1d ( 𝑥 = 𝐴 → ( 𝑥𝑆 𝐴𝑆 ) )
12 9 11 imbi12d ( 𝑥 = 𝐴 → ( ( 𝑥 ≼ ω → 𝑥𝑆 ) ↔ ( 𝐴 ≼ ω → 𝐴𝑆 ) ) )
13 12 rspcv ( 𝐴 ∈ 𝒫 𝑆 → ( ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) → ( 𝐴 ≼ ω → 𝐴𝑆 ) ) )
14 1 7 8 13 syl3c ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω ) → 𝐴𝑆 )