Metamath Proof Explorer


Theorem sigaclcu

Description: A sigma-algebra is closed under countable union. (Contributed by Thierry Arnoux, 26-Dec-2016)

Ref Expression
Assertion sigaclcu S ran sigAlgebra A 𝒫 S A ω A S

Proof

Step Hyp Ref Expression
1 simp2 S ran sigAlgebra A 𝒫 S A ω A 𝒫 S
2 isrnsiga S ran sigAlgebra S V o S 𝒫 o o S x S o x S x 𝒫 S x ω x S
3 2 simprbi S ran sigAlgebra o S 𝒫 o o S x S o x S x 𝒫 S x ω x S
4 simpr3 S 𝒫 o o S x S o x S x 𝒫 S x ω x S x 𝒫 S x ω x S
5 4 exlimiv o S 𝒫 o o S x S o x S x 𝒫 S x ω x S x 𝒫 S x ω x S
6 3 5 syl S ran sigAlgebra x 𝒫 S x ω x S
7 6 3ad2ant1 S ran sigAlgebra A 𝒫 S A ω x 𝒫 S x ω x S
8 simp3 S ran sigAlgebra A 𝒫 S A ω A ω
9 breq1 x = A x ω A ω
10 unieq x = A x = A
11 10 eleq1d x = A x S A S
12 9 11 imbi12d x = A x ω x S A ω A S
13 12 rspcv A 𝒫 S x 𝒫 S x ω x S A ω A S
14 1 7 8 13 syl3c S ran sigAlgebra A 𝒫 S A ω A S