Metamath Proof Explorer


Theorem sigaclcuni

Description: A sigma-algebra is closed under countable union: indexed union version. (Contributed by Thierry Arnoux, 8-Jun-2017)

Ref Expression
Hypothesis sigaclcuni.1 𝑘 𝐴
Assertion sigaclcuni ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘𝐴 𝐵𝑆𝐴 ≼ ω ) → 𝑘𝐴 𝐵𝑆 )

Proof

Step Hyp Ref Expression
1 sigaclcuni.1 𝑘 𝐴
2 dfiun2g ( ∀ 𝑘𝐴 𝐵𝑆 𝑘𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } )
3 2 3ad2ant2 ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘𝐴 𝐵𝑆𝐴 ≼ ω ) → 𝑘𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } )
4 simp1 ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘𝐴 𝐵𝑆𝐴 ≼ ω ) → 𝑆 ran sigAlgebra )
5 r19.29 ( ( ∀ 𝑘𝐴 𝐵𝑆 ∧ ∃ 𝑘𝐴 𝑧 = 𝐵 ) → ∃ 𝑘𝐴 ( 𝐵𝑆𝑧 = 𝐵 ) )
6 simpr ( ( 𝐵𝑆𝑧 = 𝐵 ) → 𝑧 = 𝐵 )
7 simpl ( ( 𝐵𝑆𝑧 = 𝐵 ) → 𝐵𝑆 )
8 6 7 eqeltrd ( ( 𝐵𝑆𝑧 = 𝐵 ) → 𝑧𝑆 )
9 8 rexlimivw ( ∃ 𝑘𝐴 ( 𝐵𝑆𝑧 = 𝐵 ) → 𝑧𝑆 )
10 5 9 syl ( ( ∀ 𝑘𝐴 𝐵𝑆 ∧ ∃ 𝑘𝐴 𝑧 = 𝐵 ) → 𝑧𝑆 )
11 10 ex ( ∀ 𝑘𝐴 𝐵𝑆 → ( ∃ 𝑘𝐴 𝑧 = 𝐵𝑧𝑆 ) )
12 11 abssdv ( ∀ 𝑘𝐴 𝐵𝑆 → { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } ⊆ 𝑆 )
13 12 3ad2ant2 ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘𝐴 𝐵𝑆𝐴 ≼ ω ) → { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } ⊆ 𝑆 )
14 elpw2g ( 𝑆 ran sigAlgebra → ( { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } ∈ 𝒫 𝑆 ↔ { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } ⊆ 𝑆 ) )
15 4 14 syl ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘𝐴 𝐵𝑆𝐴 ≼ ω ) → ( { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } ∈ 𝒫 𝑆 ↔ { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } ⊆ 𝑆 ) )
16 13 15 mpbird ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘𝐴 𝐵𝑆𝐴 ≼ ω ) → { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } ∈ 𝒫 𝑆 )
17 1 abrexctf ( 𝐴 ≼ ω → { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } ≼ ω )
18 17 3ad2ant3 ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘𝐴 𝐵𝑆𝐴 ≼ ω ) → { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } ≼ ω )
19 sigaclcu ( ( 𝑆 ran sigAlgebra ∧ { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } ∈ 𝒫 𝑆 ∧ { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } ≼ ω ) → { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } ∈ 𝑆 )
20 4 16 18 19 syl3anc ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘𝐴 𝐵𝑆𝐴 ≼ ω ) → { 𝑧 ∣ ∃ 𝑘𝐴 𝑧 = 𝐵 } ∈ 𝑆 )
21 3 20 eqeltrd ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘𝐴 𝐵𝑆𝐴 ≼ ω ) → 𝑘𝐴 𝐵𝑆 )