Step |
Hyp |
Ref |
Expression |
1 |
|
sigaclcuni.1 |
⊢ Ⅎ 𝑘 𝐴 |
2 |
|
dfiun2g |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ) |
3 |
2
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω ) → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ) |
4 |
|
simp1 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
5 |
|
r19.29 |
⊢ ( ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 ) → ∃ 𝑘 ∈ 𝐴 ( 𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵 ) ) |
6 |
|
simpr |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐵 ) |
7 |
|
simpl |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵 ) → 𝐵 ∈ 𝑆 ) |
8 |
6 7
|
eqeltrd |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵 ) → 𝑧 ∈ 𝑆 ) |
9 |
8
|
rexlimivw |
⊢ ( ∃ 𝑘 ∈ 𝐴 ( 𝐵 ∈ 𝑆 ∧ 𝑧 = 𝐵 ) → 𝑧 ∈ 𝑆 ) |
10 |
5 9
|
syl |
⊢ ( ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 ) → 𝑧 ∈ 𝑆 ) |
11 |
10
|
ex |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → ( ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝑆 ) ) |
12 |
11
|
abssdv |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ⊆ 𝑆 ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω ) → { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ⊆ 𝑆 ) |
14 |
|
elpw2g |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ∈ 𝒫 𝑆 ↔ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ⊆ 𝑆 ) ) |
15 |
4 14
|
syl |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω ) → ( { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ∈ 𝒫 𝑆 ↔ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ⊆ 𝑆 ) ) |
16 |
13 15
|
mpbird |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω ) → { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ∈ 𝒫 𝑆 ) |
17 |
1
|
abrexctf |
⊢ ( 𝐴 ≼ ω → { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ≼ ω ) |
18 |
17
|
3ad2ant3 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω ) → { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ≼ ω ) |
19 |
|
sigaclcu |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ∈ 𝒫 𝑆 ∧ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ≼ ω ) → ∪ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ∈ 𝑆 ) |
20 |
4 16 18 19
|
syl3anc |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω ) → ∪ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } ∈ 𝑆 ) |
21 |
3 20
|
eqeltrd |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ 𝐴 ≼ ω ) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |