Metamath Proof Explorer


Theorem sigaclfu

Description: A sigma-algebra is closed under finite union. (Contributed by Thierry Arnoux, 28-Dec-2016)

Ref Expression
Assertion sigaclfu ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ∈ Fin ) → 𝐴𝑆 )

Proof

Step Hyp Ref Expression
1 fict ( 𝐴 ∈ Fin → 𝐴 ≼ ω )
2 sigaclcu ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω ) → 𝐴𝑆 )
3 1 2 syl3an3 ( ( 𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ∈ Fin ) → 𝐴𝑆 )