Metamath Proof Explorer


Theorem sigaclcu2

Description: A sigma-algebra is closed under countable union - indexing on NN (Contributed by Thierry Arnoux, 29-Dec-2016)

Ref Expression
Assertion sigaclcu2 ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴𝑆 ) → 𝑘 ∈ ℕ 𝐴𝑆 )

Proof

Step Hyp Ref Expression
1 dfiun2g ( ∀ 𝑘 ∈ ℕ 𝐴𝑆 𝑘 ∈ ℕ 𝐴 = { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } )
2 1 adantl ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴𝑆 ) → 𝑘 ∈ ℕ 𝐴 = { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } )
3 simpl ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴𝑆 ) → 𝑆 ran sigAlgebra )
4 abid ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ↔ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 )
5 eleq1a ( 𝐴𝑆 → ( 𝑥 = 𝐴𝑥𝑆 ) )
6 5 ralimi ( ∀ 𝑘 ∈ ℕ 𝐴𝑆 → ∀ 𝑘 ∈ ℕ ( 𝑥 = 𝐴𝑥𝑆 ) )
7 r19.23v ( ∀ 𝑘 ∈ ℕ ( 𝑥 = 𝐴𝑥𝑆 ) ↔ ( ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴𝑥𝑆 ) )
8 6 7 sylib ( ∀ 𝑘 ∈ ℕ 𝐴𝑆 → ( ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴𝑥𝑆 ) )
9 8 imp ( ( ∀ 𝑘 ∈ ℕ 𝐴𝑆 ∧ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 ) → 𝑥𝑆 )
10 9 adantll ( ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴𝑆 ) ∧ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 ) → 𝑥𝑆 )
11 4 10 sylan2b ( ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴𝑆 ) ∧ 𝑥 ∈ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ) → 𝑥𝑆 )
12 11 ralrimiva ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴𝑆 ) → ∀ 𝑥 ∈ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } 𝑥𝑆 )
13 nfab1 𝑥 { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 }
14 nfcv 𝑥 𝑆
15 13 14 dfss3f ( { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ⊆ 𝑆 ↔ ∀ 𝑥 ∈ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } 𝑥𝑆 )
16 12 15 sylibr ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴𝑆 ) → { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ⊆ 𝑆 )
17 elpw2g ( 𝑆 ran sigAlgebra → ( { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ∈ 𝒫 𝑆 ↔ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ⊆ 𝑆 ) )
18 17 adantr ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴𝑆 ) → ( { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ∈ 𝒫 𝑆 ↔ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ⊆ 𝑆 ) )
19 16 18 mpbird ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴𝑆 ) → { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ∈ 𝒫 𝑆 )
20 nnct ℕ ≼ ω
21 abrexct ( ℕ ≼ ω → { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ≼ ω )
22 20 21 mp1i ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴𝑆 ) → { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ≼ ω )
23 sigaclcu ( ( 𝑆 ran sigAlgebra ∧ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ∈ 𝒫 𝑆 ∧ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ≼ ω ) → { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ∈ 𝑆 )
24 3 19 22 23 syl3anc ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴𝑆 ) → { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ∈ 𝑆 )
25 2 24 eqeltrd ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴𝑆 ) → 𝑘 ∈ ℕ 𝐴𝑆 )