Step |
Hyp |
Ref |
Expression |
1 |
|
dfiun2g |
⊢ ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → ∪ 𝑘 ∈ ℕ 𝐴 = ∪ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ) |
2 |
1
|
adantl |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) → ∪ 𝑘 ∈ ℕ 𝐴 = ∪ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ) |
3 |
|
simpl |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
4 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ↔ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 ) |
5 |
|
eleq1a |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝑆 ) ) |
6 |
5
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → ∀ 𝑘 ∈ ℕ ( 𝑥 = 𝐴 → 𝑥 ∈ 𝑆 ) ) |
7 |
|
r19.23v |
⊢ ( ∀ 𝑘 ∈ ℕ ( 𝑥 = 𝐴 → 𝑥 ∈ 𝑆 ) ↔ ( ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 → 𝑥 ∈ 𝑆 ) ) |
8 |
6 7
|
sylib |
⊢ ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → ( ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 → 𝑥 ∈ 𝑆 ) ) |
9 |
8
|
imp |
⊢ ( ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ∧ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 ) → 𝑥 ∈ 𝑆 ) |
10 |
9
|
adantll |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) ∧ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 ) → 𝑥 ∈ 𝑆 ) |
11 |
4 10
|
sylan2b |
⊢ ( ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ) → 𝑥 ∈ 𝑆 ) |
12 |
11
|
ralrimiva |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) → ∀ 𝑥 ∈ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } 𝑥 ∈ 𝑆 ) |
13 |
|
nfab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } |
14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑆 |
15 |
13 14
|
dfss3f |
⊢ ( { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ⊆ 𝑆 ↔ ∀ 𝑥 ∈ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } 𝑥 ∈ 𝑆 ) |
16 |
12 15
|
sylibr |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) → { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ⊆ 𝑆 ) |
17 |
|
elpw2g |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ∈ 𝒫 𝑆 ↔ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ⊆ 𝑆 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) → ( { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ∈ 𝒫 𝑆 ↔ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ⊆ 𝑆 ) ) |
19 |
16 18
|
mpbird |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) → { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ∈ 𝒫 𝑆 ) |
20 |
|
nnct |
⊢ ℕ ≼ ω |
21 |
|
abrexct |
⊢ ( ℕ ≼ ω → { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ≼ ω ) |
22 |
20 21
|
mp1i |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) → { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ≼ ω ) |
23 |
|
sigaclcu |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ∈ 𝒫 𝑆 ∧ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ≼ ω ) → ∪ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ∈ 𝑆 ) |
24 |
3 19 22 23
|
syl3anc |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) → ∪ { 𝑥 ∣ ∃ 𝑘 ∈ ℕ 𝑥 = 𝐴 } ∈ 𝑆 ) |
25 |
2 24
|
eqeltrd |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) |