Description: An image set of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abrexct | ⊢ ( 𝐴 ≼ ω → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | 1 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
| 3 | 1stcrestlem | ⊢ ( 𝐴 ≼ ω → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) | |
| 4 | 2 3 | eqbrtrrid | ⊢ ( 𝐴 ≼ ω → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≼ ω ) |