Description: An image set of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | abrexct | ⊢ ( 𝐴 ≼ ω → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≼ ω ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
2 | 1 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
3 | 1stcrestlem | ⊢ ( 𝐴 ≼ ω → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) | |
4 | 2 3 | eqbrtrrid | ⊢ ( 𝐴 ≼ ω → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≼ ω ) |